Properties

Label 1305.2.c.a
Level $1305$
Weight $2$
Character orbit 1305.c
Analytic conductor $10.420$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 2 q^{4} + ( - i + 2) q^{5} - 2 i q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 i q^{2} - 2 q^{4} + ( - i + 2) q^{5} - 2 i q^{7} + (4 i + 2) q^{10} + 3 q^{11} - 4 i q^{13} + 4 q^{14} - 4 q^{16} - 8 i q^{17} + (2 i - 4) q^{20} + 6 i q^{22} - i q^{23} + ( - 4 i + 3) q^{25} + 8 q^{26} + 4 i q^{28} + q^{29} - 8 q^{31} - 8 i q^{32} + 16 q^{34} + ( - 4 i - 2) q^{35} - 7 i q^{37} - 7 q^{41} - 9 i q^{43} - 6 q^{44} + 2 q^{46} + 12 i q^{47} + 3 q^{49} + (6 i + 8) q^{50} + 8 i q^{52} + 9 i q^{53} + ( - 3 i + 6) q^{55} + 2 i q^{58} + 10 q^{59} + 2 q^{61} - 16 i q^{62} + 8 q^{64} + ( - 8 i - 4) q^{65} + 8 i q^{67} + 16 i q^{68} + ( - 4 i + 8) q^{70} + 8 q^{71} + i q^{73} + 14 q^{74} - 6 i q^{77} + 10 q^{79} + (4 i - 8) q^{80} - 14 i q^{82} + 9 i q^{83} + ( - 16 i - 8) q^{85} + 18 q^{86} + 10 q^{89} - 8 q^{91} + 2 i q^{92} - 24 q^{94} + 13 i q^{97} + 6 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{4} + 4 q^{5} + 4 q^{10} + 6 q^{11} + 8 q^{14} - 8 q^{16} - 8 q^{20} + 6 q^{25} + 16 q^{26} + 2 q^{29} - 16 q^{31} + 32 q^{34} - 4 q^{35} - 14 q^{41} - 12 q^{44} + 4 q^{46} + 6 q^{49} + 16 q^{50} + 12 q^{55} + 20 q^{59} + 4 q^{61} + 16 q^{64} - 8 q^{65} + 16 q^{70} + 16 q^{71} + 28 q^{74} + 20 q^{79} - 16 q^{80} - 16 q^{85} + 36 q^{86} + 20 q^{89} - 16 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
784.1
1.00000i
1.00000i
2.00000i 0 −2.00000 2.00000 + 1.00000i 0 2.00000i 0 0 2.00000 4.00000i
784.2 2.00000i 0 −2.00000 2.00000 1.00000i 0 2.00000i 0 0 2.00000 + 4.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1305.2.c.a 2
3.b odd 2 1 435.2.c.a 2
5.b even 2 1 inner 1305.2.c.a 2
5.c odd 4 1 6525.2.a.b 1
5.c odd 4 1 6525.2.a.l 1
15.d odd 2 1 435.2.c.a 2
15.e even 4 1 2175.2.a.a 1
15.e even 4 1 2175.2.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.c.a 2 3.b odd 2 1
435.2.c.a 2 15.d odd 2 1
1305.2.c.a 2 1.a even 1 1 trivial
1305.2.c.a 2 5.b even 2 1 inner
2175.2.a.a 1 15.e even 4 1
2175.2.a.j 1 15.e even 4 1
6525.2.a.b 1 5.c odd 4 1
6525.2.a.l 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1305, [\chi])\):

\( T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 64 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 49 \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 81 \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( T^{2} + 81 \) Copy content Toggle raw display
$59$ \( (T - 10)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1 \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 169 \) Copy content Toggle raw display
show more
show less