Properties

Label 1305.2.bt
Level $1305$
Weight $2$
Character orbit 1305.bt
Rep. character $\chi_{1305}(91,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $300$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.bt (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 1128 300 828
Cusp forms 1032 300 732
Eisenstein series 96 0 96

Trace form

\( 300 q + 46 q^{4} + 2 q^{5} + 4 q^{7} + 42 q^{8} - 28 q^{11} - 4 q^{13} - 74 q^{16} - 6 q^{20} - 10 q^{22} + 28 q^{23} - 50 q^{25} + 144 q^{28} + 24 q^{29} + 14 q^{31} - 14 q^{32} - 4 q^{34} + 12 q^{35}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)