Properties

Label 1305.2.bg
Level $1305$
Weight $2$
Character orbit 1305.bg
Rep. character $\chi_{1305}(41,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $480$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.bg (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 261 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 736 480 256
Cusp forms 704 480 224
Eisenstein series 32 0 32

Trace form

\( 480 q - 12 q^{11} + 24 q^{12} + 12 q^{14} + 4 q^{15} + 240 q^{16} + 12 q^{18} - 16 q^{21} + 120 q^{24} - 240 q^{25} - 36 q^{27} + 36 q^{29} + 72 q^{32} - 24 q^{36} + 32 q^{39} + 12 q^{41} - 24 q^{46} - 72 q^{47}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)