Properties

Label 1305.2.bc
Level $1305$
Weight $2$
Character orbit 1305.bc
Rep. character $\chi_{1305}(136,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $300$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.bc (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{7})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 1128 300 828
Cusp forms 1032 300 732
Eisenstein series 96 0 96

Trace form

\( 300 q - 4 q^{2} - 54 q^{4} + 2 q^{5} - 4 q^{7} - 42 q^{8} + 24 q^{11} - 4 q^{13} - 8 q^{14} - 34 q^{16} - 12 q^{17} - 4 q^{19} + 6 q^{20} + 34 q^{22} - 24 q^{23} - 50 q^{25} - 16 q^{26} - 48 q^{28} + 12 q^{29}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)