Properties

Label 1305.2.bb
Level $1305$
Weight $2$
Character orbit 1305.bb
Rep. character $\chi_{1305}(349,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $336$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 368 336 32
Cusp forms 352 336 16
Eisenstein series 16 0 16

Trace form

\( 336 q + 168 q^{4} - 2 q^{5} - 4 q^{9} + 16 q^{11} - 16 q^{14} - 28 q^{15} - 168 q^{16} + 8 q^{20} + 16 q^{24} + 6 q^{25} - 80 q^{26} - 12 q^{29} + 18 q^{30} - 12 q^{31} + 12 q^{34} - 4 q^{35} - 8 q^{36}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)