Properties

Label 1305.2.a.t.1.5
Level $1305$
Weight $2$
Character 1305.1
Self dual yes
Analytic conductor $10.420$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(1,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,1,0,13,7,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 12x^{4} + 47x^{3} - 37x^{2} - 35x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.28209\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28209 q^{2} -0.356256 q^{4} +1.00000 q^{5} +3.04834 q^{7} -3.02092 q^{8} +1.28209 q^{10} +2.81651 q^{11} +4.80431 q^{13} +3.90823 q^{14} -3.16057 q^{16} -2.80431 q^{17} -3.76326 q^{19} -0.356256 q^{20} +3.61101 q^{22} +1.89841 q^{23} +1.00000 q^{25} +6.15954 q^{26} -1.08599 q^{28} -1.00000 q^{29} +7.76326 q^{31} +1.98972 q^{32} -3.59537 q^{34} +3.04834 q^{35} -6.31524 q^{37} -4.82483 q^{38} -3.02092 q^{40} +8.46358 q^{41} +8.36690 q^{43} -1.00340 q^{44} +2.43393 q^{46} -5.72482 q^{47} +2.29236 q^{49} +1.28209 q^{50} -1.71157 q^{52} +8.67157 q^{53} +2.81651 q^{55} -9.20879 q^{56} -1.28209 q^{58} +2.09668 q^{59} +12.8139 q^{61} +9.95317 q^{62} +8.87214 q^{64} +4.80431 q^{65} -4.17668 q^{67} +0.999054 q^{68} +3.90823 q^{70} -11.5265 q^{71} +12.5846 q^{73} -8.09668 q^{74} +1.34069 q^{76} +8.58568 q^{77} +1.86976 q^{79} -3.16057 q^{80} +10.8510 q^{82} -14.5485 q^{83} -2.80431 q^{85} +10.7271 q^{86} -8.50846 q^{88} -16.5340 q^{89} +14.6452 q^{91} -0.676322 q^{92} -7.33971 q^{94} -3.76326 q^{95} +1.26612 q^{97} +2.93900 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 13 q^{4} + 7 q^{5} + 10 q^{7} + q^{10} - 3 q^{11} + 6 q^{13} - 9 q^{14} + 21 q^{16} + 8 q^{17} + 10 q^{19} + 13 q^{20} + 9 q^{22} + 11 q^{23} + 7 q^{25} + 3 q^{26} + 25 q^{28} - 7 q^{29}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28209 0.906572 0.453286 0.891365i \(-0.350252\pi\)
0.453286 + 0.891365i \(0.350252\pi\)
\(3\) 0 0
\(4\) −0.356256 −0.178128
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.04834 1.15216 0.576082 0.817392i \(-0.304581\pi\)
0.576082 + 0.817392i \(0.304581\pi\)
\(8\) −3.02092 −1.06806
\(9\) 0 0
\(10\) 1.28209 0.405431
\(11\) 2.81651 0.849210 0.424605 0.905379i \(-0.360413\pi\)
0.424605 + 0.905379i \(0.360413\pi\)
\(12\) 0 0
\(13\) 4.80431 1.33248 0.666238 0.745739i \(-0.267903\pi\)
0.666238 + 0.745739i \(0.267903\pi\)
\(14\) 3.90823 1.04452
\(15\) 0 0
\(16\) −3.16057 −0.790142
\(17\) −2.80431 −0.680146 −0.340073 0.940399i \(-0.610452\pi\)
−0.340073 + 0.940399i \(0.610452\pi\)
\(18\) 0 0
\(19\) −3.76326 −0.863352 −0.431676 0.902029i \(-0.642078\pi\)
−0.431676 + 0.902029i \(0.642078\pi\)
\(20\) −0.356256 −0.0796613
\(21\) 0 0
\(22\) 3.61101 0.769870
\(23\) 1.89841 0.395847 0.197923 0.980217i \(-0.436580\pi\)
0.197923 + 0.980217i \(0.436580\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.15954 1.20799
\(27\) 0 0
\(28\) −1.08599 −0.205233
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 7.76326 1.39432 0.697162 0.716914i \(-0.254446\pi\)
0.697162 + 0.716914i \(0.254446\pi\)
\(32\) 1.98972 0.351737
\(33\) 0 0
\(34\) −3.59537 −0.616601
\(35\) 3.04834 0.515263
\(36\) 0 0
\(37\) −6.31524 −1.03822 −0.519109 0.854708i \(-0.673736\pi\)
−0.519109 + 0.854708i \(0.673736\pi\)
\(38\) −4.82483 −0.782690
\(39\) 0 0
\(40\) −3.02092 −0.477650
\(41\) 8.46358 1.32179 0.660894 0.750479i \(-0.270177\pi\)
0.660894 + 0.750479i \(0.270177\pi\)
\(42\) 0 0
\(43\) 8.36690 1.27594 0.637970 0.770061i \(-0.279774\pi\)
0.637970 + 0.770061i \(0.279774\pi\)
\(44\) −1.00340 −0.151268
\(45\) 0 0
\(46\) 2.43393 0.358863
\(47\) −5.72482 −0.835051 −0.417526 0.908665i \(-0.637103\pi\)
−0.417526 + 0.908665i \(0.637103\pi\)
\(48\) 0 0
\(49\) 2.29236 0.327480
\(50\) 1.28209 0.181314
\(51\) 0 0
\(52\) −1.71157 −0.237351
\(53\) 8.67157 1.19113 0.595566 0.803306i \(-0.296928\pi\)
0.595566 + 0.803306i \(0.296928\pi\)
\(54\) 0 0
\(55\) 2.81651 0.379778
\(56\) −9.20879 −1.23058
\(57\) 0 0
\(58\) −1.28209 −0.168346
\(59\) 2.09668 0.272964 0.136482 0.990643i \(-0.456420\pi\)
0.136482 + 0.990643i \(0.456420\pi\)
\(60\) 0 0
\(61\) 12.8139 1.64065 0.820323 0.571901i \(-0.193794\pi\)
0.820323 + 0.571901i \(0.193794\pi\)
\(62\) 9.95317 1.26405
\(63\) 0 0
\(64\) 8.87214 1.10902
\(65\) 4.80431 0.595902
\(66\) 0 0
\(67\) −4.17668 −0.510263 −0.255131 0.966906i \(-0.582119\pi\)
−0.255131 + 0.966906i \(0.582119\pi\)
\(68\) 0.999054 0.121153
\(69\) 0 0
\(70\) 3.90823 0.467123
\(71\) −11.5265 −1.36795 −0.683973 0.729507i \(-0.739750\pi\)
−0.683973 + 0.729507i \(0.739750\pi\)
\(72\) 0 0
\(73\) 12.5846 1.47292 0.736461 0.676480i \(-0.236496\pi\)
0.736461 + 0.676480i \(0.236496\pi\)
\(74\) −8.09668 −0.941219
\(75\) 0 0
\(76\) 1.34069 0.153787
\(77\) 8.58568 0.978429
\(78\) 0 0
\(79\) 1.86976 0.210364 0.105182 0.994453i \(-0.466457\pi\)
0.105182 + 0.994453i \(0.466457\pi\)
\(80\) −3.16057 −0.353362
\(81\) 0 0
\(82\) 10.8510 1.19830
\(83\) −14.5485 −1.59690 −0.798450 0.602061i \(-0.794347\pi\)
−0.798450 + 0.602061i \(0.794347\pi\)
\(84\) 0 0
\(85\) −2.80431 −0.304170
\(86\) 10.7271 1.15673
\(87\) 0 0
\(88\) −8.50846 −0.907005
\(89\) −16.5340 −1.75260 −0.876301 0.481764i \(-0.839996\pi\)
−0.876301 + 0.481764i \(0.839996\pi\)
\(90\) 0 0
\(91\) 14.6452 1.53523
\(92\) −0.676322 −0.0705114
\(93\) 0 0
\(94\) −7.33971 −0.757034
\(95\) −3.76326 −0.386103
\(96\) 0 0
\(97\) 1.26612 0.128555 0.0642775 0.997932i \(-0.479526\pi\)
0.0642775 + 0.997932i \(0.479526\pi\)
\(98\) 2.93900 0.296884
\(99\) 0 0
\(100\) −0.356256 −0.0356256
\(101\) −3.05791 −0.304273 −0.152137 0.988359i \(-0.548615\pi\)
−0.152137 + 0.988359i \(0.548615\pi\)
\(102\) 0 0
\(103\) −10.4587 −1.03052 −0.515262 0.857033i \(-0.672305\pi\)
−0.515262 + 0.857033i \(0.672305\pi\)
\(104\) −14.5135 −1.42316
\(105\) 0 0
\(106\) 11.1177 1.07985
\(107\) 4.83547 0.467462 0.233731 0.972301i \(-0.424906\pi\)
0.233731 + 0.972301i \(0.424906\pi\)
\(108\) 0 0
\(109\) −11.0923 −1.06245 −0.531224 0.847232i \(-0.678268\pi\)
−0.531224 + 0.847232i \(0.678268\pi\)
\(110\) 3.61101 0.344296
\(111\) 0 0
\(112\) −9.63448 −0.910373
\(113\) −16.0956 −1.51414 −0.757072 0.653331i \(-0.773371\pi\)
−0.757072 + 0.653331i \(0.773371\pi\)
\(114\) 0 0
\(115\) 1.89841 0.177028
\(116\) 0.356256 0.0330775
\(117\) 0 0
\(118\) 2.68812 0.247461
\(119\) −8.54849 −0.783639
\(120\) 0 0
\(121\) −3.06727 −0.278843
\(122\) 16.4285 1.48736
\(123\) 0 0
\(124\) −2.76571 −0.248368
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.73388 0.242593 0.121296 0.992616i \(-0.461295\pi\)
0.121296 + 0.992616i \(0.461295\pi\)
\(128\) 7.39539 0.653666
\(129\) 0 0
\(130\) 6.15954 0.540228
\(131\) −15.2833 −1.33530 −0.667652 0.744474i \(-0.732701\pi\)
−0.667652 + 0.744474i \(0.732701\pi\)
\(132\) 0 0
\(133\) −11.4717 −0.994722
\(134\) −5.35486 −0.462590
\(135\) 0 0
\(136\) 8.47161 0.726435
\(137\) −7.22502 −0.617275 −0.308637 0.951180i \(-0.599873\pi\)
−0.308637 + 0.951180i \(0.599873\pi\)
\(138\) 0 0
\(139\) 22.0819 1.87296 0.936481 0.350717i \(-0.114062\pi\)
0.936481 + 0.350717i \(0.114062\pi\)
\(140\) −1.08599 −0.0917828
\(141\) 0 0
\(142\) −14.7780 −1.24014
\(143\) 13.5314 1.13155
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 16.1346 1.33531
\(147\) 0 0
\(148\) 2.24984 0.184936
\(149\) 4.19335 0.343533 0.171766 0.985138i \(-0.445053\pi\)
0.171766 + 0.985138i \(0.445053\pi\)
\(150\) 0 0
\(151\) 8.14710 0.663002 0.331501 0.943455i \(-0.392445\pi\)
0.331501 + 0.943455i \(0.392445\pi\)
\(152\) 11.3685 0.922109
\(153\) 0 0
\(154\) 11.0076 0.887015
\(155\) 7.76326 0.623560
\(156\) 0 0
\(157\) −22.5435 −1.79917 −0.899585 0.436745i \(-0.856131\pi\)
−0.899585 + 0.436745i \(0.856131\pi\)
\(158\) 2.39719 0.190710
\(159\) 0 0
\(160\) 1.98972 0.157301
\(161\) 5.78701 0.456080
\(162\) 0 0
\(163\) 4.27339 0.334718 0.167359 0.985896i \(-0.446476\pi\)
0.167359 + 0.985896i \(0.446476\pi\)
\(164\) −3.01520 −0.235448
\(165\) 0 0
\(166\) −18.6524 −1.44770
\(167\) 7.46121 0.577366 0.288683 0.957425i \(-0.406783\pi\)
0.288683 + 0.957425i \(0.406783\pi\)
\(168\) 0 0
\(169\) 10.0814 0.775494
\(170\) −3.59537 −0.275752
\(171\) 0 0
\(172\) −2.98076 −0.227281
\(173\) −19.6934 −1.49726 −0.748632 0.662986i \(-0.769289\pi\)
−0.748632 + 0.662986i \(0.769289\pi\)
\(174\) 0 0
\(175\) 3.04834 0.230433
\(176\) −8.90178 −0.670997
\(177\) 0 0
\(178\) −21.1980 −1.58886
\(179\) 0.183602 0.0137231 0.00686153 0.999976i \(-0.497816\pi\)
0.00686153 + 0.999976i \(0.497816\pi\)
\(180\) 0 0
\(181\) −6.12292 −0.455113 −0.227556 0.973765i \(-0.573074\pi\)
−0.227556 + 0.973765i \(0.573074\pi\)
\(182\) 18.7764 1.39180
\(183\) 0 0
\(184\) −5.73496 −0.422787
\(185\) −6.31524 −0.464305
\(186\) 0 0
\(187\) −7.89838 −0.577587
\(188\) 2.03950 0.148746
\(189\) 0 0
\(190\) −4.82483 −0.350030
\(191\) −4.31671 −0.312346 −0.156173 0.987730i \(-0.549916\pi\)
−0.156173 + 0.987730i \(0.549916\pi\)
\(192\) 0 0
\(193\) 7.37818 0.531093 0.265547 0.964098i \(-0.414448\pi\)
0.265547 + 0.964098i \(0.414448\pi\)
\(194\) 1.62327 0.116544
\(195\) 0 0
\(196\) −0.816668 −0.0583334
\(197\) −14.3327 −1.02116 −0.510581 0.859830i \(-0.670570\pi\)
−0.510581 + 0.859830i \(0.670570\pi\)
\(198\) 0 0
\(199\) −13.3001 −0.942820 −0.471410 0.881914i \(-0.656255\pi\)
−0.471410 + 0.881914i \(0.656255\pi\)
\(200\) −3.02092 −0.213611
\(201\) 0 0
\(202\) −3.92050 −0.275846
\(203\) −3.04834 −0.213951
\(204\) 0 0
\(205\) 8.46358 0.591122
\(206\) −13.4089 −0.934243
\(207\) 0 0
\(208\) −15.1844 −1.05285
\(209\) −10.5993 −0.733167
\(210\) 0 0
\(211\) −20.6904 −1.42439 −0.712194 0.701983i \(-0.752298\pi\)
−0.712194 + 0.701983i \(0.752298\pi\)
\(212\) −3.08930 −0.212174
\(213\) 0 0
\(214\) 6.19948 0.423788
\(215\) 8.36690 0.570618
\(216\) 0 0
\(217\) 23.6650 1.60649
\(218\) −14.2213 −0.963185
\(219\) 0 0
\(220\) −1.00340 −0.0676492
\(221\) −13.4728 −0.906279
\(222\) 0 0
\(223\) 6.36488 0.426224 0.213112 0.977028i \(-0.431640\pi\)
0.213112 + 0.977028i \(0.431640\pi\)
\(224\) 6.06535 0.405258
\(225\) 0 0
\(226\) −20.6359 −1.37268
\(227\) 6.48836 0.430647 0.215324 0.976543i \(-0.430919\pi\)
0.215324 + 0.976543i \(0.430919\pi\)
\(228\) 0 0
\(229\) −15.3481 −1.01423 −0.507117 0.861877i \(-0.669289\pi\)
−0.507117 + 0.861877i \(0.669289\pi\)
\(230\) 2.43393 0.160489
\(231\) 0 0
\(232\) 3.02092 0.198333
\(233\) −1.44656 −0.0947671 −0.0473835 0.998877i \(-0.515088\pi\)
−0.0473835 + 0.998877i \(0.515088\pi\)
\(234\) 0 0
\(235\) −5.72482 −0.373446
\(236\) −0.746953 −0.0486225
\(237\) 0 0
\(238\) −10.9599 −0.710425
\(239\) 13.5463 0.876239 0.438119 0.898917i \(-0.355645\pi\)
0.438119 + 0.898917i \(0.355645\pi\)
\(240\) 0 0
\(241\) 15.8692 1.02223 0.511114 0.859513i \(-0.329233\pi\)
0.511114 + 0.859513i \(0.329233\pi\)
\(242\) −3.93250 −0.252791
\(243\) 0 0
\(244\) −4.56501 −0.292245
\(245\) 2.29236 0.146454
\(246\) 0 0
\(247\) −18.0799 −1.15040
\(248\) −23.4522 −1.48922
\(249\) 0 0
\(250\) 1.28209 0.0810862
\(251\) −12.3597 −0.780140 −0.390070 0.920785i \(-0.627549\pi\)
−0.390070 + 0.920785i \(0.627549\pi\)
\(252\) 0 0
\(253\) 5.34690 0.336157
\(254\) 3.50507 0.219928
\(255\) 0 0
\(256\) −8.26275 −0.516422
\(257\) 15.9491 0.994876 0.497438 0.867499i \(-0.334274\pi\)
0.497438 + 0.867499i \(0.334274\pi\)
\(258\) 0 0
\(259\) −19.2510 −1.19620
\(260\) −1.71157 −0.106147
\(261\) 0 0
\(262\) −19.5944 −1.21055
\(263\) −6.58678 −0.406158 −0.203079 0.979162i \(-0.565095\pi\)
−0.203079 + 0.979162i \(0.565095\pi\)
\(264\) 0 0
\(265\) 8.67157 0.532691
\(266\) −14.7077 −0.901787
\(267\) 0 0
\(268\) 1.48797 0.0908921
\(269\) 5.72949 0.349333 0.174666 0.984628i \(-0.444115\pi\)
0.174666 + 0.984628i \(0.444115\pi\)
\(270\) 0 0
\(271\) 12.1264 0.736629 0.368315 0.929701i \(-0.379935\pi\)
0.368315 + 0.929701i \(0.379935\pi\)
\(272\) 8.86323 0.537412
\(273\) 0 0
\(274\) −9.26309 −0.559604
\(275\) 2.81651 0.169842
\(276\) 0 0
\(277\) 4.75183 0.285510 0.142755 0.989758i \(-0.454404\pi\)
0.142755 + 0.989758i \(0.454404\pi\)
\(278\) 28.3109 1.69797
\(279\) 0 0
\(280\) −9.20879 −0.550331
\(281\) −5.31853 −0.317277 −0.158638 0.987337i \(-0.550710\pi\)
−0.158638 + 0.987337i \(0.550710\pi\)
\(282\) 0 0
\(283\) 29.9181 1.77844 0.889222 0.457476i \(-0.151246\pi\)
0.889222 + 0.457476i \(0.151246\pi\)
\(284\) 4.10640 0.243670
\(285\) 0 0
\(286\) 17.3484 1.02583
\(287\) 25.7998 1.52292
\(288\) 0 0
\(289\) −9.13583 −0.537402
\(290\) −1.28209 −0.0752867
\(291\) 0 0
\(292\) −4.48336 −0.262369
\(293\) −14.3954 −0.840989 −0.420495 0.907295i \(-0.638143\pi\)
−0.420495 + 0.907295i \(0.638143\pi\)
\(294\) 0 0
\(295\) 2.09668 0.122073
\(296\) 19.0778 1.10888
\(297\) 0 0
\(298\) 5.37623 0.311437
\(299\) 9.12058 0.527457
\(300\) 0 0
\(301\) 25.5051 1.47009
\(302\) 10.4453 0.601058
\(303\) 0 0
\(304\) 11.8941 0.682171
\(305\) 12.8139 0.733719
\(306\) 0 0
\(307\) 6.92723 0.395358 0.197679 0.980267i \(-0.436660\pi\)
0.197679 + 0.980267i \(0.436660\pi\)
\(308\) −3.05870 −0.174286
\(309\) 0 0
\(310\) 9.95317 0.565302
\(311\) −30.3284 −1.71977 −0.859883 0.510492i \(-0.829463\pi\)
−0.859883 + 0.510492i \(0.829463\pi\)
\(312\) 0 0
\(313\) 0.579687 0.0327658 0.0163829 0.999866i \(-0.494785\pi\)
0.0163829 + 0.999866i \(0.494785\pi\)
\(314\) −28.9028 −1.63108
\(315\) 0 0
\(316\) −0.666113 −0.0374718
\(317\) 32.7502 1.83943 0.919716 0.392585i \(-0.128419\pi\)
0.919716 + 0.392585i \(0.128419\pi\)
\(318\) 0 0
\(319\) −2.81651 −0.157694
\(320\) 8.87214 0.495967
\(321\) 0 0
\(322\) 7.41944 0.413469
\(323\) 10.5534 0.587205
\(324\) 0 0
\(325\) 4.80431 0.266495
\(326\) 5.47885 0.303446
\(327\) 0 0
\(328\) −25.5678 −1.41175
\(329\) −17.4512 −0.962115
\(330\) 0 0
\(331\) −23.6139 −1.29794 −0.648969 0.760814i \(-0.724800\pi\)
−0.648969 + 0.760814i \(0.724800\pi\)
\(332\) 5.18298 0.284453
\(333\) 0 0
\(334\) 9.56592 0.523424
\(335\) −4.17668 −0.228196
\(336\) 0 0
\(337\) −14.1181 −0.769064 −0.384532 0.923112i \(-0.625637\pi\)
−0.384532 + 0.923112i \(0.625637\pi\)
\(338\) 12.9253 0.703041
\(339\) 0 0
\(340\) 0.999054 0.0541813
\(341\) 21.8653 1.18407
\(342\) 0 0
\(343\) −14.3505 −0.774853
\(344\) −25.2758 −1.36278
\(345\) 0 0
\(346\) −25.2487 −1.35738
\(347\) 32.6549 1.75301 0.876503 0.481397i \(-0.159870\pi\)
0.876503 + 0.481397i \(0.159870\pi\)
\(348\) 0 0
\(349\) −8.18813 −0.438300 −0.219150 0.975691i \(-0.570328\pi\)
−0.219150 + 0.975691i \(0.570328\pi\)
\(350\) 3.90823 0.208904
\(351\) 0 0
\(352\) 5.60408 0.298698
\(353\) 24.4423 1.30093 0.650465 0.759536i \(-0.274574\pi\)
0.650465 + 0.759536i \(0.274574\pi\)
\(354\) 0 0
\(355\) −11.5265 −0.611764
\(356\) 5.89034 0.312188
\(357\) 0 0
\(358\) 0.235394 0.0124409
\(359\) −1.23943 −0.0654148 −0.0327074 0.999465i \(-0.510413\pi\)
−0.0327074 + 0.999465i \(0.510413\pi\)
\(360\) 0 0
\(361\) −4.83785 −0.254624
\(362\) −7.85011 −0.412592
\(363\) 0 0
\(364\) −5.21743 −0.273468
\(365\) 12.5846 0.658711
\(366\) 0 0
\(367\) −7.35985 −0.384181 −0.192091 0.981377i \(-0.561527\pi\)
−0.192091 + 0.981377i \(0.561527\pi\)
\(368\) −6.00007 −0.312775
\(369\) 0 0
\(370\) −8.09668 −0.420926
\(371\) 26.4339 1.37238
\(372\) 0 0
\(373\) −34.0997 −1.76561 −0.882807 0.469735i \(-0.844349\pi\)
−0.882807 + 0.469735i \(0.844349\pi\)
\(374\) −10.1264 −0.523624
\(375\) 0 0
\(376\) 17.2942 0.891883
\(377\) −4.80431 −0.247435
\(378\) 0 0
\(379\) −29.5074 −1.51570 −0.757848 0.652432i \(-0.773749\pi\)
−0.757848 + 0.652432i \(0.773749\pi\)
\(380\) 1.34069 0.0687757
\(381\) 0 0
\(382\) −5.53439 −0.283164
\(383\) 12.4518 0.636256 0.318128 0.948048i \(-0.396946\pi\)
0.318128 + 0.948048i \(0.396946\pi\)
\(384\) 0 0
\(385\) 8.58568 0.437567
\(386\) 9.45947 0.481474
\(387\) 0 0
\(388\) −0.451063 −0.0228992
\(389\) −19.9464 −1.01132 −0.505660 0.862733i \(-0.668751\pi\)
−0.505660 + 0.862733i \(0.668751\pi\)
\(390\) 0 0
\(391\) −5.32375 −0.269234
\(392\) −6.92505 −0.349768
\(393\) 0 0
\(394\) −18.3757 −0.925756
\(395\) 1.86976 0.0940778
\(396\) 0 0
\(397\) 9.76342 0.490012 0.245006 0.969522i \(-0.421210\pi\)
0.245006 + 0.969522i \(0.421210\pi\)
\(398\) −17.0519 −0.854734
\(399\) 0 0
\(400\) −3.16057 −0.158028
\(401\) 17.3956 0.868697 0.434348 0.900745i \(-0.356979\pi\)
0.434348 + 0.900745i \(0.356979\pi\)
\(402\) 0 0
\(403\) 37.2971 1.85790
\(404\) 1.08940 0.0541996
\(405\) 0 0
\(406\) −3.90823 −0.193962
\(407\) −17.7869 −0.881665
\(408\) 0 0
\(409\) 7.31195 0.361552 0.180776 0.983524i \(-0.442139\pi\)
0.180776 + 0.983524i \(0.442139\pi\)
\(410\) 10.8510 0.535894
\(411\) 0 0
\(412\) 3.72596 0.183565
\(413\) 6.39137 0.314499
\(414\) 0 0
\(415\) −14.5485 −0.714156
\(416\) 9.55926 0.468681
\(417\) 0 0
\(418\) −13.5892 −0.664668
\(419\) 19.6377 0.959367 0.479683 0.877442i \(-0.340752\pi\)
0.479683 + 0.877442i \(0.340752\pi\)
\(420\) 0 0
\(421\) −3.10395 −0.151277 −0.0756386 0.997135i \(-0.524100\pi\)
−0.0756386 + 0.997135i \(0.524100\pi\)
\(422\) −26.5269 −1.29131
\(423\) 0 0
\(424\) −26.1962 −1.27220
\(425\) −2.80431 −0.136029
\(426\) 0 0
\(427\) 39.0609 1.89029
\(428\) −1.72266 −0.0832681
\(429\) 0 0
\(430\) 10.7271 0.517306
\(431\) −10.7572 −0.518155 −0.259077 0.965857i \(-0.583418\pi\)
−0.259077 + 0.965857i \(0.583418\pi\)
\(432\) 0 0
\(433\) −32.3805 −1.55611 −0.778053 0.628198i \(-0.783793\pi\)
−0.778053 + 0.628198i \(0.783793\pi\)
\(434\) 30.3406 1.45640
\(435\) 0 0
\(436\) 3.95169 0.189252
\(437\) −7.14423 −0.341755
\(438\) 0 0
\(439\) 26.1669 1.24888 0.624438 0.781074i \(-0.285328\pi\)
0.624438 + 0.781074i \(0.285328\pi\)
\(440\) −8.50846 −0.405625
\(441\) 0 0
\(442\) −17.2733 −0.821606
\(443\) −4.50747 −0.214156 −0.107078 0.994251i \(-0.534150\pi\)
−0.107078 + 0.994251i \(0.534150\pi\)
\(444\) 0 0
\(445\) −16.5340 −0.783787
\(446\) 8.16033 0.386403
\(447\) 0 0
\(448\) 27.0453 1.27777
\(449\) −14.1591 −0.668210 −0.334105 0.942536i \(-0.608434\pi\)
−0.334105 + 0.942536i \(0.608434\pi\)
\(450\) 0 0
\(451\) 23.8378 1.12248
\(452\) 5.73415 0.269712
\(453\) 0 0
\(454\) 8.31863 0.390413
\(455\) 14.6452 0.686576
\(456\) 0 0
\(457\) 24.9467 1.16696 0.583480 0.812128i \(-0.301691\pi\)
0.583480 + 0.812128i \(0.301691\pi\)
\(458\) −19.6776 −0.919476
\(459\) 0 0
\(460\) −0.676322 −0.0315337
\(461\) −9.42297 −0.438871 −0.219436 0.975627i \(-0.570422\pi\)
−0.219436 + 0.975627i \(0.570422\pi\)
\(462\) 0 0
\(463\) 1.83425 0.0852448 0.0426224 0.999091i \(-0.486429\pi\)
0.0426224 + 0.999091i \(0.486429\pi\)
\(464\) 3.16057 0.146726
\(465\) 0 0
\(466\) −1.85461 −0.0859131
\(467\) 36.6207 1.69460 0.847301 0.531113i \(-0.178226\pi\)
0.847301 + 0.531113i \(0.178226\pi\)
\(468\) 0 0
\(469\) −12.7319 −0.587906
\(470\) −7.33971 −0.338556
\(471\) 0 0
\(472\) −6.33389 −0.291541
\(473\) 23.5655 1.08354
\(474\) 0 0
\(475\) −3.76326 −0.172670
\(476\) 3.04545 0.139588
\(477\) 0 0
\(478\) 17.3675 0.794373
\(479\) −42.4972 −1.94175 −0.970874 0.239592i \(-0.922986\pi\)
−0.970874 + 0.239592i \(0.922986\pi\)
\(480\) 0 0
\(481\) −30.3404 −1.38340
\(482\) 20.3457 0.926723
\(483\) 0 0
\(484\) 1.09273 0.0496697
\(485\) 1.26612 0.0574915
\(486\) 0 0
\(487\) 25.6410 1.16191 0.580953 0.813937i \(-0.302680\pi\)
0.580953 + 0.813937i \(0.302680\pi\)
\(488\) −38.7096 −1.75230
\(489\) 0 0
\(490\) 2.93900 0.132771
\(491\) −22.4285 −1.01218 −0.506092 0.862480i \(-0.668910\pi\)
−0.506092 + 0.862480i \(0.668910\pi\)
\(492\) 0 0
\(493\) 2.80431 0.126300
\(494\) −23.1800 −1.04292
\(495\) 0 0
\(496\) −24.5363 −1.10171
\(497\) −35.1367 −1.57610
\(498\) 0 0
\(499\) 34.3650 1.53839 0.769195 0.639014i \(-0.220657\pi\)
0.769195 + 0.639014i \(0.220657\pi\)
\(500\) −0.356256 −0.0159323
\(501\) 0 0
\(502\) −15.8462 −0.707253
\(503\) 9.91136 0.441926 0.220963 0.975282i \(-0.429080\pi\)
0.220963 + 0.975282i \(0.429080\pi\)
\(504\) 0 0
\(505\) −3.05791 −0.136075
\(506\) 6.85519 0.304750
\(507\) 0 0
\(508\) −0.973962 −0.0432126
\(509\) −38.8937 −1.72393 −0.861967 0.506964i \(-0.830768\pi\)
−0.861967 + 0.506964i \(0.830768\pi\)
\(510\) 0 0
\(511\) 38.3623 1.69705
\(512\) −25.3843 −1.12184
\(513\) 0 0
\(514\) 20.4481 0.901926
\(515\) −10.4587 −0.460864
\(516\) 0 0
\(517\) −16.1240 −0.709134
\(518\) −24.6814 −1.08444
\(519\) 0 0
\(520\) −14.5135 −0.636457
\(521\) 21.0434 0.921928 0.460964 0.887419i \(-0.347504\pi\)
0.460964 + 0.887419i \(0.347504\pi\)
\(522\) 0 0
\(523\) 13.4413 0.587746 0.293873 0.955845i \(-0.405056\pi\)
0.293873 + 0.955845i \(0.405056\pi\)
\(524\) 5.44475 0.237855
\(525\) 0 0
\(526\) −8.44482 −0.368211
\(527\) −21.7706 −0.948343
\(528\) 0 0
\(529\) −19.3960 −0.843305
\(530\) 11.1177 0.482922
\(531\) 0 0
\(532\) 4.08686 0.177188
\(533\) 40.6617 1.76125
\(534\) 0 0
\(535\) 4.83547 0.209055
\(536\) 12.6174 0.544990
\(537\) 0 0
\(538\) 7.34569 0.316695
\(539\) 6.45646 0.278099
\(540\) 0 0
\(541\) 20.2537 0.870777 0.435388 0.900243i \(-0.356611\pi\)
0.435388 + 0.900243i \(0.356611\pi\)
\(542\) 15.5471 0.667807
\(543\) 0 0
\(544\) −5.57981 −0.239232
\(545\) −11.0923 −0.475141
\(546\) 0 0
\(547\) 9.62331 0.411463 0.205732 0.978608i \(-0.434043\pi\)
0.205732 + 0.978608i \(0.434043\pi\)
\(548\) 2.57396 0.109954
\(549\) 0 0
\(550\) 3.61101 0.153974
\(551\) 3.76326 0.160320
\(552\) 0 0
\(553\) 5.69966 0.242374
\(554\) 6.09225 0.258835
\(555\) 0 0
\(556\) −7.86681 −0.333627
\(557\) 25.3720 1.07504 0.537522 0.843249i \(-0.319360\pi\)
0.537522 + 0.843249i \(0.319360\pi\)
\(558\) 0 0
\(559\) 40.1972 1.70016
\(560\) −9.63448 −0.407131
\(561\) 0 0
\(562\) −6.81881 −0.287634
\(563\) −23.2414 −0.979509 −0.489755 0.871860i \(-0.662914\pi\)
−0.489755 + 0.871860i \(0.662914\pi\)
\(564\) 0 0
\(565\) −16.0956 −0.677146
\(566\) 38.3575 1.61229
\(567\) 0 0
\(568\) 34.8207 1.46105
\(569\) −6.19363 −0.259651 −0.129825 0.991537i \(-0.541442\pi\)
−0.129825 + 0.991537i \(0.541442\pi\)
\(570\) 0 0
\(571\) 32.5435 1.36190 0.680951 0.732329i \(-0.261567\pi\)
0.680951 + 0.732329i \(0.261567\pi\)
\(572\) −4.82064 −0.201561
\(573\) 0 0
\(574\) 33.0776 1.38063
\(575\) 1.89841 0.0791694
\(576\) 0 0
\(577\) 12.3229 0.513010 0.256505 0.966543i \(-0.417429\pi\)
0.256505 + 0.966543i \(0.417429\pi\)
\(578\) −11.7129 −0.487193
\(579\) 0 0
\(580\) 0.356256 0.0147927
\(581\) −44.3486 −1.83989
\(582\) 0 0
\(583\) 24.4236 1.01152
\(584\) −38.0172 −1.57316
\(585\) 0 0
\(586\) −18.4562 −0.762417
\(587\) −9.91125 −0.409081 −0.204541 0.978858i \(-0.565570\pi\)
−0.204541 + 0.978858i \(0.565570\pi\)
\(588\) 0 0
\(589\) −29.2152 −1.20379
\(590\) 2.68812 0.110668
\(591\) 0 0
\(592\) 19.9597 0.820340
\(593\) 4.59660 0.188760 0.0943799 0.995536i \(-0.469913\pi\)
0.0943799 + 0.995536i \(0.469913\pi\)
\(594\) 0 0
\(595\) −8.54849 −0.350454
\(596\) −1.49391 −0.0611928
\(597\) 0 0
\(598\) 11.6934 0.478177
\(599\) 5.96837 0.243861 0.121930 0.992539i \(-0.461092\pi\)
0.121930 + 0.992539i \(0.461092\pi\)
\(600\) 0 0
\(601\) −20.5147 −0.836810 −0.418405 0.908261i \(-0.637411\pi\)
−0.418405 + 0.908261i \(0.637411\pi\)
\(602\) 32.6998 1.33274
\(603\) 0 0
\(604\) −2.90245 −0.118099
\(605\) −3.06727 −0.124702
\(606\) 0 0
\(607\) 22.4002 0.909195 0.454597 0.890697i \(-0.349783\pi\)
0.454597 + 0.890697i \(0.349783\pi\)
\(608\) −7.48785 −0.303673
\(609\) 0 0
\(610\) 16.4285 0.665169
\(611\) −27.5038 −1.11269
\(612\) 0 0
\(613\) −13.0623 −0.527580 −0.263790 0.964580i \(-0.584973\pi\)
−0.263790 + 0.964580i \(0.584973\pi\)
\(614\) 8.88130 0.358420
\(615\) 0 0
\(616\) −25.9367 −1.04502
\(617\) −36.4129 −1.46593 −0.732965 0.680266i \(-0.761864\pi\)
−0.732965 + 0.680266i \(0.761864\pi\)
\(618\) 0 0
\(619\) 19.1399 0.769298 0.384649 0.923063i \(-0.374323\pi\)
0.384649 + 0.923063i \(0.374323\pi\)
\(620\) −2.76571 −0.111074
\(621\) 0 0
\(622\) −38.8836 −1.55909
\(623\) −50.4012 −2.01928
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.743208 0.0297046
\(627\) 0 0
\(628\) 8.03128 0.320483
\(629\) 17.7099 0.706140
\(630\) 0 0
\(631\) −10.4468 −0.415879 −0.207939 0.978142i \(-0.566676\pi\)
−0.207939 + 0.978142i \(0.566676\pi\)
\(632\) −5.64840 −0.224681
\(633\) 0 0
\(634\) 41.9885 1.66758
\(635\) 2.73388 0.108491
\(636\) 0 0
\(637\) 11.0132 0.436360
\(638\) −3.61101 −0.142961
\(639\) 0 0
\(640\) 7.39539 0.292328
\(641\) 19.4186 0.766988 0.383494 0.923543i \(-0.374721\pi\)
0.383494 + 0.923543i \(0.374721\pi\)
\(642\) 0 0
\(643\) −12.2156 −0.481738 −0.240869 0.970558i \(-0.577432\pi\)
−0.240869 + 0.970558i \(0.577432\pi\)
\(644\) −2.06166 −0.0812407
\(645\) 0 0
\(646\) 13.5303 0.532343
\(647\) 12.6785 0.498445 0.249223 0.968446i \(-0.419825\pi\)
0.249223 + 0.968446i \(0.419825\pi\)
\(648\) 0 0
\(649\) 5.90531 0.231804
\(650\) 6.15954 0.241597
\(651\) 0 0
\(652\) −1.52242 −0.0596226
\(653\) 39.7406 1.55517 0.777585 0.628777i \(-0.216444\pi\)
0.777585 + 0.628777i \(0.216444\pi\)
\(654\) 0 0
\(655\) −15.2833 −0.597166
\(656\) −26.7497 −1.04440
\(657\) 0 0
\(658\) −22.3739 −0.872226
\(659\) 16.8212 0.655259 0.327630 0.944806i \(-0.393750\pi\)
0.327630 + 0.944806i \(0.393750\pi\)
\(660\) 0 0
\(661\) −32.0658 −1.24721 −0.623607 0.781738i \(-0.714333\pi\)
−0.623607 + 0.781738i \(0.714333\pi\)
\(662\) −30.2751 −1.17667
\(663\) 0 0
\(664\) 43.9498 1.70558
\(665\) −11.4717 −0.444853
\(666\) 0 0
\(667\) −1.89841 −0.0735069
\(668\) −2.65810 −0.102845
\(669\) 0 0
\(670\) −5.35486 −0.206876
\(671\) 36.0903 1.39325
\(672\) 0 0
\(673\) 33.9106 1.30716 0.653578 0.756859i \(-0.273267\pi\)
0.653578 + 0.756859i \(0.273267\pi\)
\(674\) −18.1007 −0.697211
\(675\) 0 0
\(676\) −3.59157 −0.138137
\(677\) 21.8353 0.839199 0.419600 0.907709i \(-0.362170\pi\)
0.419600 + 0.907709i \(0.362170\pi\)
\(678\) 0 0
\(679\) 3.85956 0.148116
\(680\) 8.47161 0.324872
\(681\) 0 0
\(682\) 28.0332 1.07345
\(683\) 51.5851 1.97385 0.986925 0.161183i \(-0.0515309\pi\)
0.986925 + 0.161183i \(0.0515309\pi\)
\(684\) 0 0
\(685\) −7.22502 −0.276054
\(686\) −18.3985 −0.702459
\(687\) 0 0
\(688\) −26.4442 −1.00817
\(689\) 41.6610 1.58716
\(690\) 0 0
\(691\) −33.7654 −1.28449 −0.642247 0.766498i \(-0.721998\pi\)
−0.642247 + 0.766498i \(0.721998\pi\)
\(692\) 7.01590 0.266705
\(693\) 0 0
\(694\) 41.8664 1.58923
\(695\) 22.0819 0.837614
\(696\) 0 0
\(697\) −23.7345 −0.899009
\(698\) −10.4979 −0.397351
\(699\) 0 0
\(700\) −1.08599 −0.0410465
\(701\) −4.56010 −0.172233 −0.0861164 0.996285i \(-0.527446\pi\)
−0.0861164 + 0.996285i \(0.527446\pi\)
\(702\) 0 0
\(703\) 23.7659 0.896348
\(704\) 24.9885 0.941788
\(705\) 0 0
\(706\) 31.3371 1.17939
\(707\) −9.32154 −0.350573
\(708\) 0 0
\(709\) −21.3972 −0.803587 −0.401794 0.915730i \(-0.631613\pi\)
−0.401794 + 0.915730i \(0.631613\pi\)
\(710\) −14.7780 −0.554608
\(711\) 0 0
\(712\) 49.9480 1.87188
\(713\) 14.7379 0.551938
\(714\) 0 0
\(715\) 13.5314 0.506046
\(716\) −0.0654093 −0.00244446
\(717\) 0 0
\(718\) −1.58906 −0.0593032
\(719\) 23.6194 0.880855 0.440428 0.897788i \(-0.354827\pi\)
0.440428 + 0.897788i \(0.354827\pi\)
\(720\) 0 0
\(721\) −31.8815 −1.18733
\(722\) −6.20254 −0.230835
\(723\) 0 0
\(724\) 2.18133 0.0810684
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −4.17101 −0.154694 −0.0773471 0.997004i \(-0.524645\pi\)
−0.0773471 + 0.997004i \(0.524645\pi\)
\(728\) −44.2419 −1.63971
\(729\) 0 0
\(730\) 16.1346 0.597168
\(731\) −23.4634 −0.867826
\(732\) 0 0
\(733\) −10.0875 −0.372591 −0.186296 0.982494i \(-0.559648\pi\)
−0.186296 + 0.982494i \(0.559648\pi\)
\(734\) −9.43596 −0.348288
\(735\) 0 0
\(736\) 3.77732 0.139234
\(737\) −11.7637 −0.433320
\(738\) 0 0
\(739\) 0.903562 0.0332381 0.0166190 0.999862i \(-0.494710\pi\)
0.0166190 + 0.999862i \(0.494710\pi\)
\(740\) 2.24984 0.0827058
\(741\) 0 0
\(742\) 33.8905 1.24416
\(743\) −14.5745 −0.534688 −0.267344 0.963601i \(-0.586146\pi\)
−0.267344 + 0.963601i \(0.586146\pi\)
\(744\) 0 0
\(745\) 4.19335 0.153632
\(746\) −43.7187 −1.60066
\(747\) 0 0
\(748\) 2.81385 0.102884
\(749\) 14.7401 0.538593
\(750\) 0 0
\(751\) −12.3037 −0.448969 −0.224485 0.974478i \(-0.572070\pi\)
−0.224485 + 0.974478i \(0.572070\pi\)
\(752\) 18.0937 0.659809
\(753\) 0 0
\(754\) −6.15954 −0.224317
\(755\) 8.14710 0.296503
\(756\) 0 0
\(757\) 52.5511 1.91000 0.955001 0.296603i \(-0.0958539\pi\)
0.955001 + 0.296603i \(0.0958539\pi\)
\(758\) −37.8311 −1.37409
\(759\) 0 0
\(760\) 11.3685 0.412380
\(761\) −17.2173 −0.624125 −0.312062 0.950062i \(-0.601020\pi\)
−0.312062 + 0.950062i \(0.601020\pi\)
\(762\) 0 0
\(763\) −33.8130 −1.22411
\(764\) 1.53785 0.0556376
\(765\) 0 0
\(766\) 15.9643 0.576812
\(767\) 10.0731 0.363718
\(768\) 0 0
\(769\) −53.9886 −1.94688 −0.973439 0.228946i \(-0.926472\pi\)
−0.973439 + 0.228946i \(0.926472\pi\)
\(770\) 11.0076 0.396685
\(771\) 0 0
\(772\) −2.62852 −0.0946026
\(773\) 4.54822 0.163588 0.0817940 0.996649i \(-0.473935\pi\)
0.0817940 + 0.996649i \(0.473935\pi\)
\(774\) 0 0
\(775\) 7.76326 0.278865
\(776\) −3.82485 −0.137304
\(777\) 0 0
\(778\) −25.5729 −0.916834
\(779\) −31.8507 −1.14117
\(780\) 0 0
\(781\) −32.4646 −1.16167
\(782\) −6.82550 −0.244079
\(783\) 0 0
\(784\) −7.24517 −0.258756
\(785\) −22.5435 −0.804614
\(786\) 0 0
\(787\) 6.17181 0.220001 0.110001 0.993932i \(-0.464915\pi\)
0.110001 + 0.993932i \(0.464915\pi\)
\(788\) 5.10611 0.181898
\(789\) 0 0
\(790\) 2.39719 0.0852882
\(791\) −49.0647 −1.74454
\(792\) 0 0
\(793\) 61.5617 2.18612
\(794\) 12.5175 0.444231
\(795\) 0 0
\(796\) 4.73825 0.167943
\(797\) −37.0901 −1.31380 −0.656900 0.753978i \(-0.728133\pi\)
−0.656900 + 0.753978i \(0.728133\pi\)
\(798\) 0 0
\(799\) 16.0542 0.567957
\(800\) 1.98972 0.0703474
\(801\) 0 0
\(802\) 22.3027 0.787536
\(803\) 35.4448 1.25082
\(804\) 0 0
\(805\) 5.78701 0.203965
\(806\) 47.8181 1.68432
\(807\) 0 0
\(808\) 9.23771 0.324982
\(809\) −9.68286 −0.340431 −0.170216 0.985407i \(-0.554446\pi\)
−0.170216 + 0.985407i \(0.554446\pi\)
\(810\) 0 0
\(811\) 37.0679 1.30163 0.650815 0.759236i \(-0.274427\pi\)
0.650815 + 0.759236i \(0.274427\pi\)
\(812\) 1.08599 0.0381107
\(813\) 0 0
\(814\) −22.8044 −0.799293
\(815\) 4.27339 0.149690
\(816\) 0 0
\(817\) −31.4869 −1.10159
\(818\) 9.37454 0.327773
\(819\) 0 0
\(820\) −3.01520 −0.105295
\(821\) 15.8261 0.552336 0.276168 0.961109i \(-0.410935\pi\)
0.276168 + 0.961109i \(0.410935\pi\)
\(822\) 0 0
\(823\) −3.74633 −0.130589 −0.0652944 0.997866i \(-0.520799\pi\)
−0.0652944 + 0.997866i \(0.520799\pi\)
\(824\) 31.5948 1.10066
\(825\) 0 0
\(826\) 8.19429 0.285116
\(827\) 12.5732 0.437212 0.218606 0.975813i \(-0.429849\pi\)
0.218606 + 0.975813i \(0.429849\pi\)
\(828\) 0 0
\(829\) −22.7218 −0.789160 −0.394580 0.918861i \(-0.629110\pi\)
−0.394580 + 0.918861i \(0.629110\pi\)
\(830\) −18.6524 −0.647433
\(831\) 0 0
\(832\) 42.6245 1.47774
\(833\) −6.42850 −0.222734
\(834\) 0 0
\(835\) 7.46121 0.258206
\(836\) 3.77605 0.130598
\(837\) 0 0
\(838\) 25.1773 0.869735
\(839\) −24.4758 −0.844998 −0.422499 0.906363i \(-0.638847\pi\)
−0.422499 + 0.906363i \(0.638847\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −3.97953 −0.137144
\(843\) 0 0
\(844\) 7.37109 0.253723
\(845\) 10.0814 0.346812
\(846\) 0 0
\(847\) −9.35007 −0.321272
\(848\) −27.4071 −0.941164
\(849\) 0 0
\(850\) −3.59537 −0.123320
\(851\) −11.9889 −0.410975
\(852\) 0 0
\(853\) −51.3695 −1.75886 −0.879429 0.476030i \(-0.842075\pi\)
−0.879429 + 0.476030i \(0.842075\pi\)
\(854\) 50.0795 1.71368
\(855\) 0 0
\(856\) −14.6076 −0.499276
\(857\) −31.9427 −1.09114 −0.545572 0.838064i \(-0.683687\pi\)
−0.545572 + 0.838064i \(0.683687\pi\)
\(858\) 0 0
\(859\) 14.6511 0.499888 0.249944 0.968260i \(-0.419588\pi\)
0.249944 + 0.968260i \(0.419588\pi\)
\(860\) −2.98076 −0.101643
\(861\) 0 0
\(862\) −13.7916 −0.469744
\(863\) 35.4628 1.20717 0.603583 0.797300i \(-0.293739\pi\)
0.603583 + 0.797300i \(0.293739\pi\)
\(864\) 0 0
\(865\) −19.6934 −0.669596
\(866\) −41.5146 −1.41072
\(867\) 0 0
\(868\) −8.43082 −0.286161
\(869\) 5.26620 0.178643
\(870\) 0 0
\(871\) −20.0661 −0.679913
\(872\) 33.5089 1.13476
\(873\) 0 0
\(874\) −9.15952 −0.309825
\(875\) 3.04834 0.103053
\(876\) 0 0
\(877\) −6.35693 −0.214658 −0.107329 0.994224i \(-0.534230\pi\)
−0.107329 + 0.994224i \(0.534230\pi\)
\(878\) 33.5482 1.13220
\(879\) 0 0
\(880\) −8.90178 −0.300079
\(881\) 26.3799 0.888762 0.444381 0.895838i \(-0.353424\pi\)
0.444381 + 0.895838i \(0.353424\pi\)
\(882\) 0 0
\(883\) 22.7479 0.765528 0.382764 0.923846i \(-0.374972\pi\)
0.382764 + 0.923846i \(0.374972\pi\)
\(884\) 4.79977 0.161434
\(885\) 0 0
\(886\) −5.77896 −0.194148
\(887\) 29.6259 0.994741 0.497370 0.867538i \(-0.334299\pi\)
0.497370 + 0.867538i \(0.334299\pi\)
\(888\) 0 0
\(889\) 8.33379 0.279506
\(890\) −21.1980 −0.710559
\(891\) 0 0
\(892\) −2.26753 −0.0759225
\(893\) 21.5440 0.720943
\(894\) 0 0
\(895\) 0.183602 0.00613714
\(896\) 22.5436 0.753130
\(897\) 0 0
\(898\) −18.1532 −0.605780
\(899\) −7.76326 −0.258919
\(900\) 0 0
\(901\) −24.3178 −0.810144
\(902\) 30.5620 1.01760
\(903\) 0 0
\(904\) 48.6235 1.61719
\(905\) −6.12292 −0.203533
\(906\) 0 0
\(907\) −20.6308 −0.685034 −0.342517 0.939512i \(-0.611279\pi\)
−0.342517 + 0.939512i \(0.611279\pi\)
\(908\) −2.31152 −0.0767104
\(909\) 0 0
\(910\) 18.7764 0.622430
\(911\) 50.8968 1.68629 0.843143 0.537690i \(-0.180703\pi\)
0.843143 + 0.537690i \(0.180703\pi\)
\(912\) 0 0
\(913\) −40.9759 −1.35610
\(914\) 31.9839 1.05793
\(915\) 0 0
\(916\) 5.46787 0.180664
\(917\) −46.5885 −1.53849
\(918\) 0 0
\(919\) 26.6896 0.880408 0.440204 0.897898i \(-0.354906\pi\)
0.440204 + 0.897898i \(0.354906\pi\)
\(920\) −5.73496 −0.189076
\(921\) 0 0
\(922\) −12.0810 −0.397868
\(923\) −55.3770 −1.82276
\(924\) 0 0
\(925\) −6.31524 −0.207644
\(926\) 2.35166 0.0772805
\(927\) 0 0
\(928\) −1.98972 −0.0653159
\(929\) 58.7249 1.92670 0.963350 0.268247i \(-0.0864444\pi\)
0.963350 + 0.268247i \(0.0864444\pi\)
\(930\) 0 0
\(931\) −8.62676 −0.282731
\(932\) 0.515345 0.0168807
\(933\) 0 0
\(934\) 46.9508 1.53628
\(935\) −7.89838 −0.258305
\(936\) 0 0
\(937\) −59.8471 −1.95512 −0.977559 0.210661i \(-0.932438\pi\)
−0.977559 + 0.210661i \(0.932438\pi\)
\(938\) −16.3234 −0.532979
\(939\) 0 0
\(940\) 2.03950 0.0665213
\(941\) 22.5358 0.734645 0.367323 0.930094i \(-0.380274\pi\)
0.367323 + 0.930094i \(0.380274\pi\)
\(942\) 0 0
\(943\) 16.0674 0.523226
\(944\) −6.62669 −0.215680
\(945\) 0 0
\(946\) 30.2130 0.982308
\(947\) 43.5409 1.41489 0.707444 0.706769i \(-0.249848\pi\)
0.707444 + 0.706769i \(0.249848\pi\)
\(948\) 0 0
\(949\) 60.4606 1.96263
\(950\) −4.82483 −0.156538
\(951\) 0 0
\(952\) 25.8243 0.836972
\(953\) 12.5224 0.405641 0.202820 0.979216i \(-0.434989\pi\)
0.202820 + 0.979216i \(0.434989\pi\)
\(954\) 0 0
\(955\) −4.31671 −0.139685
\(956\) −4.82596 −0.156083
\(957\) 0 0
\(958\) −54.4851 −1.76033
\(959\) −22.0243 −0.711202
\(960\) 0 0
\(961\) 29.2682 0.944137
\(962\) −38.8990 −1.25415
\(963\) 0 0
\(964\) −5.65352 −0.182087
\(965\) 7.37818 0.237512
\(966\) 0 0
\(967\) 59.2236 1.90450 0.952251 0.305316i \(-0.0987620\pi\)
0.952251 + 0.305316i \(0.0987620\pi\)
\(968\) 9.26598 0.297820
\(969\) 0 0
\(970\) 1.62327 0.0521202
\(971\) −51.2735 −1.64544 −0.822722 0.568444i \(-0.807546\pi\)
−0.822722 + 0.568444i \(0.807546\pi\)
\(972\) 0 0
\(973\) 67.3131 2.15796
\(974\) 32.8740 1.05335
\(975\) 0 0
\(976\) −40.4991 −1.29634
\(977\) 48.6811 1.55745 0.778723 0.627368i \(-0.215868\pi\)
0.778723 + 0.627368i \(0.215868\pi\)
\(978\) 0 0
\(979\) −46.5682 −1.48833
\(980\) −0.816668 −0.0260875
\(981\) 0 0
\(982\) −28.7552 −0.917617
\(983\) −9.71972 −0.310011 −0.155006 0.987914i \(-0.549540\pi\)
−0.155006 + 0.987914i \(0.549540\pi\)
\(984\) 0 0
\(985\) −14.3327 −0.456677
\(986\) 3.59537 0.114500
\(987\) 0 0
\(988\) 6.44107 0.204918
\(989\) 15.8838 0.505077
\(990\) 0 0
\(991\) 52.1919 1.65793 0.828966 0.559299i \(-0.188930\pi\)
0.828966 + 0.559299i \(0.188930\pi\)
\(992\) 15.4467 0.490435
\(993\) 0 0
\(994\) −45.0483 −1.42885
\(995\) −13.3001 −0.421642
\(996\) 0 0
\(997\) 8.91886 0.282463 0.141232 0.989977i \(-0.454894\pi\)
0.141232 + 0.989977i \(0.454894\pi\)
\(998\) 44.0589 1.39466
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.a.t.1.5 yes 7
3.2 odd 2 1305.2.a.s.1.3 7
5.4 even 2 6525.2.a.bv.1.3 7
15.14 odd 2 6525.2.a.bw.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.a.s.1.3 7 3.2 odd 2
1305.2.a.t.1.5 yes 7 1.1 even 1 trivial
6525.2.a.bv.1.3 7 5.4 even 2
6525.2.a.bw.1.5 7 15.14 odd 2