Properties

Label 1305.2.a.k.1.1
Level $1305$
Weight $2$
Character 1305.1
Self dual yes
Analytic conductor $10.420$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4204774638\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.61803 q^{4} +1.00000 q^{5} -3.00000 q^{7} +2.23607 q^{8} +O(q^{10})\) \(q-0.618034 q^{2} -1.61803 q^{4} +1.00000 q^{5} -3.00000 q^{7} +2.23607 q^{8} -0.618034 q^{10} +5.47214 q^{11} -6.23607 q^{13} +1.85410 q^{14} +1.85410 q^{16} -3.47214 q^{17} +7.70820 q^{19} -1.61803 q^{20} -3.38197 q^{22} +1.00000 q^{25} +3.85410 q^{26} +4.85410 q^{28} -1.00000 q^{29} -8.00000 q^{31} -5.61803 q^{32} +2.14590 q^{34} -3.00000 q^{35} -8.00000 q^{37} -4.76393 q^{38} +2.23607 q^{40} +4.47214 q^{41} +3.23607 q^{43} -8.85410 q^{44} -6.70820 q^{47} +2.00000 q^{49} -0.618034 q^{50} +10.0902 q^{52} +6.76393 q^{53} +5.47214 q^{55} -6.70820 q^{56} +0.618034 q^{58} -5.23607 q^{59} -5.70820 q^{61} +4.94427 q^{62} -0.236068 q^{64} -6.23607 q^{65} -11.4721 q^{67} +5.61803 q^{68} +1.85410 q^{70} -7.23607 q^{71} -8.00000 q^{73} +4.94427 q^{74} -12.4721 q^{76} -16.4164 q^{77} -6.18034 q^{79} +1.85410 q^{80} -2.76393 q^{82} +3.70820 q^{83} -3.47214 q^{85} -2.00000 q^{86} +12.2361 q^{88} -11.1803 q^{89} +18.7082 q^{91} +4.14590 q^{94} +7.70820 q^{95} +2.76393 q^{97} -1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 2 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} + 2 q^{5} - 6 q^{7} + q^{10} + 2 q^{11} - 8 q^{13} - 3 q^{14} - 3 q^{16} + 2 q^{17} + 2 q^{19} - q^{20} - 9 q^{22} + 2 q^{25} + q^{26} + 3 q^{28} - 2 q^{29} - 16 q^{31} - 9 q^{32} + 11 q^{34} - 6 q^{35} - 16 q^{37} - 14 q^{38} + 2 q^{43} - 11 q^{44} + 4 q^{49} + q^{50} + 9 q^{52} + 18 q^{53} + 2 q^{55} - q^{58} - 6 q^{59} + 2 q^{61} - 8 q^{62} + 4 q^{64} - 8 q^{65} - 14 q^{67} + 9 q^{68} - 3 q^{70} - 10 q^{71} - 16 q^{73} - 8 q^{74} - 16 q^{76} - 6 q^{77} + 10 q^{79} - 3 q^{80} - 10 q^{82} - 6 q^{83} + 2 q^{85} - 4 q^{86} + 20 q^{88} + 24 q^{91} + 15 q^{94} + 2 q^{95} + 10 q^{97} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 2.23607 0.790569
\(9\) 0 0
\(10\) −0.618034 −0.195440
\(11\) 5.47214 1.64991 0.824956 0.565198i \(-0.191200\pi\)
0.824956 + 0.565198i \(0.191200\pi\)
\(12\) 0 0
\(13\) −6.23607 −1.72957 −0.864787 0.502139i \(-0.832547\pi\)
−0.864787 + 0.502139i \(0.832547\pi\)
\(14\) 1.85410 0.495530
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) −3.47214 −0.842117 −0.421058 0.907034i \(-0.638341\pi\)
−0.421058 + 0.907034i \(0.638341\pi\)
\(18\) 0 0
\(19\) 7.70820 1.76838 0.884192 0.467124i \(-0.154710\pi\)
0.884192 + 0.467124i \(0.154710\pi\)
\(20\) −1.61803 −0.361803
\(21\) 0 0
\(22\) −3.38197 −0.721038
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 3.85410 0.755852
\(27\) 0 0
\(28\) 4.85410 0.917339
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −5.61803 −0.993137
\(33\) 0 0
\(34\) 2.14590 0.368018
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −4.76393 −0.772812
\(39\) 0 0
\(40\) 2.23607 0.353553
\(41\) 4.47214 0.698430 0.349215 0.937043i \(-0.386448\pi\)
0.349215 + 0.937043i \(0.386448\pi\)
\(42\) 0 0
\(43\) 3.23607 0.493496 0.246748 0.969080i \(-0.420638\pi\)
0.246748 + 0.969080i \(0.420638\pi\)
\(44\) −8.85410 −1.33481
\(45\) 0 0
\(46\) 0 0
\(47\) −6.70820 −0.978492 −0.489246 0.872146i \(-0.662728\pi\)
−0.489246 + 0.872146i \(0.662728\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) −0.618034 −0.0874032
\(51\) 0 0
\(52\) 10.0902 1.39925
\(53\) 6.76393 0.929098 0.464549 0.885548i \(-0.346217\pi\)
0.464549 + 0.885548i \(0.346217\pi\)
\(54\) 0 0
\(55\) 5.47214 0.737863
\(56\) −6.70820 −0.896421
\(57\) 0 0
\(58\) 0.618034 0.0811518
\(59\) −5.23607 −0.681678 −0.340839 0.940122i \(-0.610711\pi\)
−0.340839 + 0.940122i \(0.610711\pi\)
\(60\) 0 0
\(61\) −5.70820 −0.730861 −0.365430 0.930839i \(-0.619078\pi\)
−0.365430 + 0.930839i \(0.619078\pi\)
\(62\) 4.94427 0.627923
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) −6.23607 −0.773489
\(66\) 0 0
\(67\) −11.4721 −1.40154 −0.700772 0.713385i \(-0.747161\pi\)
−0.700772 + 0.713385i \(0.747161\pi\)
\(68\) 5.61803 0.681287
\(69\) 0 0
\(70\) 1.85410 0.221608
\(71\) −7.23607 −0.858763 −0.429382 0.903123i \(-0.641268\pi\)
−0.429382 + 0.903123i \(0.641268\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 4.94427 0.574760
\(75\) 0 0
\(76\) −12.4721 −1.43065
\(77\) −16.4164 −1.87082
\(78\) 0 0
\(79\) −6.18034 −0.695343 −0.347671 0.937616i \(-0.613027\pi\)
−0.347671 + 0.937616i \(0.613027\pi\)
\(80\) 1.85410 0.207295
\(81\) 0 0
\(82\) −2.76393 −0.305225
\(83\) 3.70820 0.407028 0.203514 0.979072i \(-0.434764\pi\)
0.203514 + 0.979072i \(0.434764\pi\)
\(84\) 0 0
\(85\) −3.47214 −0.376606
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 12.2361 1.30437
\(89\) −11.1803 −1.18511 −0.592557 0.805529i \(-0.701881\pi\)
−0.592557 + 0.805529i \(0.701881\pi\)
\(90\) 0 0
\(91\) 18.7082 1.96115
\(92\) 0 0
\(93\) 0 0
\(94\) 4.14590 0.427617
\(95\) 7.70820 0.790845
\(96\) 0 0
\(97\) 2.76393 0.280635 0.140317 0.990107i \(-0.455188\pi\)
0.140317 + 0.990107i \(0.455188\pi\)
\(98\) −1.23607 −0.124862
\(99\) 0 0
\(100\) −1.61803 −0.161803
\(101\) −4.23607 −0.421505 −0.210752 0.977540i \(-0.567591\pi\)
−0.210752 + 0.977540i \(0.567591\pi\)
\(102\) 0 0
\(103\) 7.41641 0.730760 0.365380 0.930858i \(-0.380939\pi\)
0.365380 + 0.930858i \(0.380939\pi\)
\(104\) −13.9443 −1.36735
\(105\) 0 0
\(106\) −4.18034 −0.406031
\(107\) −7.52786 −0.727746 −0.363873 0.931449i \(-0.618546\pi\)
−0.363873 + 0.931449i \(0.618546\pi\)
\(108\) 0 0
\(109\) −16.4164 −1.57241 −0.786203 0.617968i \(-0.787956\pi\)
−0.786203 + 0.617968i \(0.787956\pi\)
\(110\) −3.38197 −0.322458
\(111\) 0 0
\(112\) −5.56231 −0.525589
\(113\) 7.94427 0.747334 0.373667 0.927563i \(-0.378100\pi\)
0.373667 + 0.927563i \(0.378100\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.61803 0.150231
\(117\) 0 0
\(118\) 3.23607 0.297904
\(119\) 10.4164 0.954871
\(120\) 0 0
\(121\) 18.9443 1.72221
\(122\) 3.52786 0.319398
\(123\) 0 0
\(124\) 12.9443 1.16243
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 11.3820 1.00603
\(129\) 0 0
\(130\) 3.85410 0.338027
\(131\) −3.47214 −0.303362 −0.151681 0.988430i \(-0.548469\pi\)
−0.151681 + 0.988430i \(0.548469\pi\)
\(132\) 0 0
\(133\) −23.1246 −2.00516
\(134\) 7.09017 0.612497
\(135\) 0 0
\(136\) −7.76393 −0.665752
\(137\) 10.9443 0.935032 0.467516 0.883985i \(-0.345149\pi\)
0.467516 + 0.883985i \(0.345149\pi\)
\(138\) 0 0
\(139\) −0.708204 −0.0600691 −0.0300345 0.999549i \(-0.509562\pi\)
−0.0300345 + 0.999549i \(0.509562\pi\)
\(140\) 4.85410 0.410246
\(141\) 0 0
\(142\) 4.47214 0.375293
\(143\) −34.1246 −2.85364
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 4.94427 0.409191
\(147\) 0 0
\(148\) 12.9443 1.06401
\(149\) −20.1803 −1.65324 −0.826619 0.562762i \(-0.809739\pi\)
−0.826619 + 0.562762i \(0.809739\pi\)
\(150\) 0 0
\(151\) 2.47214 0.201180 0.100590 0.994928i \(-0.467927\pi\)
0.100590 + 0.994928i \(0.467927\pi\)
\(152\) 17.2361 1.39803
\(153\) 0 0
\(154\) 10.1459 0.817580
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −11.7082 −0.934416 −0.467208 0.884147i \(-0.654740\pi\)
−0.467208 + 0.884147i \(0.654740\pi\)
\(158\) 3.81966 0.303876
\(159\) 0 0
\(160\) −5.61803 −0.444145
\(161\) 0 0
\(162\) 0 0
\(163\) −15.1246 −1.18465 −0.592326 0.805699i \(-0.701790\pi\)
−0.592326 + 0.805699i \(0.701790\pi\)
\(164\) −7.23607 −0.565042
\(165\) 0 0
\(166\) −2.29180 −0.177878
\(167\) 17.8885 1.38426 0.692129 0.721774i \(-0.256673\pi\)
0.692129 + 0.721774i \(0.256673\pi\)
\(168\) 0 0
\(169\) 25.8885 1.99143
\(170\) 2.14590 0.164583
\(171\) 0 0
\(172\) −5.23607 −0.399246
\(173\) 19.4164 1.47620 0.738101 0.674690i \(-0.235723\pi\)
0.738101 + 0.674690i \(0.235723\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 10.1459 0.764776
\(177\) 0 0
\(178\) 6.90983 0.517914
\(179\) −4.18034 −0.312453 −0.156227 0.987721i \(-0.549933\pi\)
−0.156227 + 0.987721i \(0.549933\pi\)
\(180\) 0 0
\(181\) 8.41641 0.625587 0.312793 0.949821i \(-0.398735\pi\)
0.312793 + 0.949821i \(0.398735\pi\)
\(182\) −11.5623 −0.857055
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) −19.0000 −1.38942
\(188\) 10.8541 0.791617
\(189\) 0 0
\(190\) −4.76393 −0.345612
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) −1.70820 −0.122642
\(195\) 0 0
\(196\) −3.23607 −0.231148
\(197\) −14.9443 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(198\) 0 0
\(199\) 20.7082 1.46797 0.733983 0.679168i \(-0.237659\pi\)
0.733983 + 0.679168i \(0.237659\pi\)
\(200\) 2.23607 0.158114
\(201\) 0 0
\(202\) 2.61803 0.184204
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 4.47214 0.312348
\(206\) −4.58359 −0.319354
\(207\) 0 0
\(208\) −11.5623 −0.801702
\(209\) 42.1803 2.91768
\(210\) 0 0
\(211\) −27.8885 −1.91993 −0.959963 0.280126i \(-0.909624\pi\)
−0.959963 + 0.280126i \(0.909624\pi\)
\(212\) −10.9443 −0.751656
\(213\) 0 0
\(214\) 4.65248 0.318037
\(215\) 3.23607 0.220698
\(216\) 0 0
\(217\) 24.0000 1.62923
\(218\) 10.1459 0.687167
\(219\) 0 0
\(220\) −8.85410 −0.596943
\(221\) 21.6525 1.45650
\(222\) 0 0
\(223\) −13.0000 −0.870544 −0.435272 0.900299i \(-0.643348\pi\)
−0.435272 + 0.900299i \(0.643348\pi\)
\(224\) 16.8541 1.12611
\(225\) 0 0
\(226\) −4.90983 −0.326597
\(227\) 5.81966 0.386264 0.193132 0.981173i \(-0.438135\pi\)
0.193132 + 0.981173i \(0.438135\pi\)
\(228\) 0 0
\(229\) 9.41641 0.622254 0.311127 0.950368i \(-0.399294\pi\)
0.311127 + 0.950368i \(0.399294\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.23607 −0.146805
\(233\) −1.41641 −0.0927920 −0.0463960 0.998923i \(-0.514774\pi\)
−0.0463960 + 0.998923i \(0.514774\pi\)
\(234\) 0 0
\(235\) −6.70820 −0.437595
\(236\) 8.47214 0.551489
\(237\) 0 0
\(238\) −6.43769 −0.417294
\(239\) −11.8885 −0.769006 −0.384503 0.923124i \(-0.625627\pi\)
−0.384503 + 0.923124i \(0.625627\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) −11.7082 −0.752632
\(243\) 0 0
\(244\) 9.23607 0.591279
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) −48.0689 −3.05855
\(248\) −17.8885 −1.13592
\(249\) 0 0
\(250\) −0.618034 −0.0390879
\(251\) 24.8885 1.57095 0.785475 0.618893i \(-0.212418\pi\)
0.785475 + 0.618893i \(0.212418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 3.70820 0.232673
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 9.70820 0.605581 0.302791 0.953057i \(-0.402082\pi\)
0.302791 + 0.953057i \(0.402082\pi\)
\(258\) 0 0
\(259\) 24.0000 1.49129
\(260\) 10.0902 0.625766
\(261\) 0 0
\(262\) 2.14590 0.132574
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 6.76393 0.415505
\(266\) 14.2918 0.876286
\(267\) 0 0
\(268\) 18.5623 1.13387
\(269\) 30.2361 1.84353 0.921763 0.387754i \(-0.126749\pi\)
0.921763 + 0.387754i \(0.126749\pi\)
\(270\) 0 0
\(271\) 14.3607 0.872349 0.436175 0.899862i \(-0.356333\pi\)
0.436175 + 0.899862i \(0.356333\pi\)
\(272\) −6.43769 −0.390343
\(273\) 0 0
\(274\) −6.76393 −0.408624
\(275\) 5.47214 0.329982
\(276\) 0 0
\(277\) 8.70820 0.523225 0.261613 0.965173i \(-0.415746\pi\)
0.261613 + 0.965173i \(0.415746\pi\)
\(278\) 0.437694 0.0262511
\(279\) 0 0
\(280\) −6.70820 −0.400892
\(281\) 23.1246 1.37950 0.689749 0.724048i \(-0.257721\pi\)
0.689749 + 0.724048i \(0.257721\pi\)
\(282\) 0 0
\(283\) 18.4721 1.09805 0.549027 0.835804i \(-0.314998\pi\)
0.549027 + 0.835804i \(0.314998\pi\)
\(284\) 11.7082 0.694754
\(285\) 0 0
\(286\) 21.0902 1.24709
\(287\) −13.4164 −0.791946
\(288\) 0 0
\(289\) −4.94427 −0.290840
\(290\) 0.618034 0.0362922
\(291\) 0 0
\(292\) 12.9443 0.757506
\(293\) 17.9443 1.04832 0.524158 0.851621i \(-0.324380\pi\)
0.524158 + 0.851621i \(0.324380\pi\)
\(294\) 0 0
\(295\) −5.23607 −0.304856
\(296\) −17.8885 −1.03975
\(297\) 0 0
\(298\) 12.4721 0.722491
\(299\) 0 0
\(300\) 0 0
\(301\) −9.70820 −0.559572
\(302\) −1.52786 −0.0879187
\(303\) 0 0
\(304\) 14.2918 0.819691
\(305\) −5.70820 −0.326851
\(306\) 0 0
\(307\) 24.9443 1.42364 0.711822 0.702360i \(-0.247870\pi\)
0.711822 + 0.702360i \(0.247870\pi\)
\(308\) 26.5623 1.51353
\(309\) 0 0
\(310\) 4.94427 0.280816
\(311\) −23.4721 −1.33098 −0.665491 0.746406i \(-0.731778\pi\)
−0.665491 + 0.746406i \(0.731778\pi\)
\(312\) 0 0
\(313\) 1.18034 0.0667168 0.0333584 0.999443i \(-0.489380\pi\)
0.0333584 + 0.999443i \(0.489380\pi\)
\(314\) 7.23607 0.408355
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 28.4164 1.59602 0.798012 0.602641i \(-0.205885\pi\)
0.798012 + 0.602641i \(0.205885\pi\)
\(318\) 0 0
\(319\) −5.47214 −0.306381
\(320\) −0.236068 −0.0131966
\(321\) 0 0
\(322\) 0 0
\(323\) −26.7639 −1.48919
\(324\) 0 0
\(325\) −6.23607 −0.345915
\(326\) 9.34752 0.517711
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) 20.1246 1.10951
\(330\) 0 0
\(331\) −15.8885 −0.873313 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) −11.0557 −0.604943
\(335\) −11.4721 −0.626790
\(336\) 0 0
\(337\) −20.4721 −1.11519 −0.557594 0.830114i \(-0.688275\pi\)
−0.557594 + 0.830114i \(0.688275\pi\)
\(338\) −16.0000 −0.870285
\(339\) 0 0
\(340\) 5.61803 0.304681
\(341\) −43.7771 −2.37066
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 7.23607 0.390143
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) −17.5279 −0.940945 −0.470473 0.882415i \(-0.655917\pi\)
−0.470473 + 0.882415i \(0.655917\pi\)
\(348\) 0 0
\(349\) −18.9443 −1.01406 −0.507032 0.861927i \(-0.669257\pi\)
−0.507032 + 0.861927i \(0.669257\pi\)
\(350\) 1.85410 0.0991059
\(351\) 0 0
\(352\) −30.7426 −1.63859
\(353\) −3.52786 −0.187769 −0.0938846 0.995583i \(-0.529928\pi\)
−0.0938846 + 0.995583i \(0.529928\pi\)
\(354\) 0 0
\(355\) −7.23607 −0.384051
\(356\) 18.0902 0.958777
\(357\) 0 0
\(358\) 2.58359 0.136547
\(359\) 4.58359 0.241913 0.120956 0.992658i \(-0.461404\pi\)
0.120956 + 0.992658i \(0.461404\pi\)
\(360\) 0 0
\(361\) 40.4164 2.12718
\(362\) −5.20163 −0.273391
\(363\) 0 0
\(364\) −30.2705 −1.58661
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) 15.4164 0.804730 0.402365 0.915479i \(-0.368188\pi\)
0.402365 + 0.915479i \(0.368188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 4.94427 0.257040
\(371\) −20.2918 −1.05350
\(372\) 0 0
\(373\) 15.8885 0.822678 0.411339 0.911483i \(-0.365061\pi\)
0.411339 + 0.911483i \(0.365061\pi\)
\(374\) 11.7426 0.607198
\(375\) 0 0
\(376\) −15.0000 −0.773566
\(377\) 6.23607 0.321174
\(378\) 0 0
\(379\) 6.94427 0.356703 0.178352 0.983967i \(-0.442924\pi\)
0.178352 + 0.983967i \(0.442924\pi\)
\(380\) −12.4721 −0.639807
\(381\) 0 0
\(382\) 7.41641 0.379456
\(383\) 20.0689 1.02547 0.512736 0.858546i \(-0.328632\pi\)
0.512736 + 0.858546i \(0.328632\pi\)
\(384\) 0 0
\(385\) −16.4164 −0.836658
\(386\) 3.70820 0.188743
\(387\) 0 0
\(388\) −4.47214 −0.227038
\(389\) −22.2361 −1.12741 −0.563707 0.825975i \(-0.690625\pi\)
−0.563707 + 0.825975i \(0.690625\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.47214 0.225877
\(393\) 0 0
\(394\) 9.23607 0.465306
\(395\) −6.18034 −0.310967
\(396\) 0 0
\(397\) −6.58359 −0.330421 −0.165211 0.986258i \(-0.552830\pi\)
−0.165211 + 0.986258i \(0.552830\pi\)
\(398\) −12.7984 −0.641525
\(399\) 0 0
\(400\) 1.85410 0.0927051
\(401\) 36.6525 1.83034 0.915169 0.403071i \(-0.132057\pi\)
0.915169 + 0.403071i \(0.132057\pi\)
\(402\) 0 0
\(403\) 49.8885 2.48513
\(404\) 6.85410 0.341004
\(405\) 0 0
\(406\) −1.85410 −0.0920175
\(407\) −43.7771 −2.16995
\(408\) 0 0
\(409\) 8.65248 0.427837 0.213919 0.976851i \(-0.431377\pi\)
0.213919 + 0.976851i \(0.431377\pi\)
\(410\) −2.76393 −0.136501
\(411\) 0 0
\(412\) −12.0000 −0.591198
\(413\) 15.7082 0.772950
\(414\) 0 0
\(415\) 3.70820 0.182029
\(416\) 35.0344 1.71770
\(417\) 0 0
\(418\) −26.0689 −1.27507
\(419\) −34.3607 −1.67863 −0.839315 0.543646i \(-0.817043\pi\)
−0.839315 + 0.543646i \(0.817043\pi\)
\(420\) 0 0
\(421\) −1.81966 −0.0886848 −0.0443424 0.999016i \(-0.514119\pi\)
−0.0443424 + 0.999016i \(0.514119\pi\)
\(422\) 17.2361 0.839039
\(423\) 0 0
\(424\) 15.1246 0.734516
\(425\) −3.47214 −0.168423
\(426\) 0 0
\(427\) 17.1246 0.828718
\(428\) 12.1803 0.588759
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) −34.4721 −1.66046 −0.830232 0.557418i \(-0.811792\pi\)
−0.830232 + 0.557418i \(0.811792\pi\)
\(432\) 0 0
\(433\) −4.65248 −0.223584 −0.111792 0.993732i \(-0.535659\pi\)
−0.111792 + 0.993732i \(0.535659\pi\)
\(434\) −14.8328 −0.711998
\(435\) 0 0
\(436\) 26.5623 1.27210
\(437\) 0 0
\(438\) 0 0
\(439\) −10.1246 −0.483221 −0.241611 0.970373i \(-0.577676\pi\)
−0.241611 + 0.970373i \(0.577676\pi\)
\(440\) 12.2361 0.583332
\(441\) 0 0
\(442\) −13.3820 −0.636515
\(443\) −23.7639 −1.12906 −0.564529 0.825413i \(-0.690942\pi\)
−0.564529 + 0.825413i \(0.690942\pi\)
\(444\) 0 0
\(445\) −11.1803 −0.529999
\(446\) 8.03444 0.380442
\(447\) 0 0
\(448\) 0.708204 0.0334595
\(449\) −1.76393 −0.0832451 −0.0416225 0.999133i \(-0.513253\pi\)
−0.0416225 + 0.999133i \(0.513253\pi\)
\(450\) 0 0
\(451\) 24.4721 1.15235
\(452\) −12.8541 −0.604606
\(453\) 0 0
\(454\) −3.59675 −0.168804
\(455\) 18.7082 0.877054
\(456\) 0 0
\(457\) 6.12461 0.286497 0.143249 0.989687i \(-0.454245\pi\)
0.143249 + 0.989687i \(0.454245\pi\)
\(458\) −5.81966 −0.271935
\(459\) 0 0
\(460\) 0 0
\(461\) −2.36068 −0.109948 −0.0549739 0.998488i \(-0.517508\pi\)
−0.0549739 + 0.998488i \(0.517508\pi\)
\(462\) 0 0
\(463\) −2.52786 −0.117480 −0.0587399 0.998273i \(-0.518708\pi\)
−0.0587399 + 0.998273i \(0.518708\pi\)
\(464\) −1.85410 −0.0860745
\(465\) 0 0
\(466\) 0.875388 0.0405516
\(467\) 12.9443 0.598989 0.299495 0.954098i \(-0.403182\pi\)
0.299495 + 0.954098i \(0.403182\pi\)
\(468\) 0 0
\(469\) 34.4164 1.58920
\(470\) 4.14590 0.191236
\(471\) 0 0
\(472\) −11.7082 −0.538914
\(473\) 17.7082 0.814224
\(474\) 0 0
\(475\) 7.70820 0.353677
\(476\) −16.8541 −0.772506
\(477\) 0 0
\(478\) 7.34752 0.336068
\(479\) 6.47214 0.295719 0.147860 0.989008i \(-0.452762\pi\)
0.147860 + 0.989008i \(0.452762\pi\)
\(480\) 0 0
\(481\) 49.8885 2.27472
\(482\) −4.32624 −0.197055
\(483\) 0 0
\(484\) −30.6525 −1.39329
\(485\) 2.76393 0.125504
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) −12.7639 −0.577796
\(489\) 0 0
\(490\) −1.23607 −0.0558399
\(491\) −25.8885 −1.16833 −0.584167 0.811634i \(-0.698579\pi\)
−0.584167 + 0.811634i \(0.698579\pi\)
\(492\) 0 0
\(493\) 3.47214 0.156377
\(494\) 29.7082 1.33664
\(495\) 0 0
\(496\) −14.8328 −0.666013
\(497\) 21.7082 0.973746
\(498\) 0 0
\(499\) −23.7639 −1.06382 −0.531910 0.846801i \(-0.678525\pi\)
−0.531910 + 0.846801i \(0.678525\pi\)
\(500\) −1.61803 −0.0723607
\(501\) 0 0
\(502\) −15.3820 −0.686531
\(503\) 30.5967 1.36424 0.682121 0.731240i \(-0.261058\pi\)
0.682121 + 0.731240i \(0.261058\pi\)
\(504\) 0 0
\(505\) −4.23607 −0.188503
\(506\) 0 0
\(507\) 0 0
\(508\) 9.70820 0.430732
\(509\) −6.18034 −0.273939 −0.136969 0.990575i \(-0.543736\pi\)
−0.136969 + 0.990575i \(0.543736\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) −18.7082 −0.826794
\(513\) 0 0
\(514\) −6.00000 −0.264649
\(515\) 7.41641 0.326806
\(516\) 0 0
\(517\) −36.7082 −1.61442
\(518\) −14.8328 −0.651717
\(519\) 0 0
\(520\) −13.9443 −0.611497
\(521\) 20.7639 0.909684 0.454842 0.890572i \(-0.349696\pi\)
0.454842 + 0.890572i \(0.349696\pi\)
\(522\) 0 0
\(523\) −29.8328 −1.30450 −0.652249 0.758005i \(-0.726174\pi\)
−0.652249 + 0.758005i \(0.726174\pi\)
\(524\) 5.61803 0.245425
\(525\) 0 0
\(526\) 14.8328 0.646741
\(527\) 27.7771 1.20999
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −4.18034 −0.181582
\(531\) 0 0
\(532\) 37.4164 1.62221
\(533\) −27.8885 −1.20799
\(534\) 0 0
\(535\) −7.52786 −0.325458
\(536\) −25.6525 −1.10802
\(537\) 0 0
\(538\) −18.6869 −0.805650
\(539\) 10.9443 0.471403
\(540\) 0 0
\(541\) 38.3607 1.64925 0.824627 0.565677i \(-0.191385\pi\)
0.824627 + 0.565677i \(0.191385\pi\)
\(542\) −8.87539 −0.381231
\(543\) 0 0
\(544\) 19.5066 0.836338
\(545\) −16.4164 −0.703202
\(546\) 0 0
\(547\) 27.4721 1.17462 0.587312 0.809361i \(-0.300186\pi\)
0.587312 + 0.809361i \(0.300186\pi\)
\(548\) −17.7082 −0.756457
\(549\) 0 0
\(550\) −3.38197 −0.144208
\(551\) −7.70820 −0.328381
\(552\) 0 0
\(553\) 18.5410 0.788444
\(554\) −5.38197 −0.228658
\(555\) 0 0
\(556\) 1.14590 0.0485969
\(557\) −2.76393 −0.117112 −0.0585558 0.998284i \(-0.518650\pi\)
−0.0585558 + 0.998284i \(0.518650\pi\)
\(558\) 0 0
\(559\) −20.1803 −0.853537
\(560\) −5.56231 −0.235050
\(561\) 0 0
\(562\) −14.2918 −0.602863
\(563\) −44.1246 −1.85963 −0.929815 0.368026i \(-0.880034\pi\)
−0.929815 + 0.368026i \(0.880034\pi\)
\(564\) 0 0
\(565\) 7.94427 0.334218
\(566\) −11.4164 −0.479867
\(567\) 0 0
\(568\) −16.1803 −0.678912
\(569\) 5.18034 0.217171 0.108586 0.994087i \(-0.465368\pi\)
0.108586 + 0.994087i \(0.465368\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 55.2148 2.30865
\(573\) 0 0
\(574\) 8.29180 0.346093
\(575\) 0 0
\(576\) 0 0
\(577\) −29.3050 −1.21998 −0.609991 0.792409i \(-0.708827\pi\)
−0.609991 + 0.792409i \(0.708827\pi\)
\(578\) 3.05573 0.127102
\(579\) 0 0
\(580\) 1.61803 0.0671852
\(581\) −11.1246 −0.461527
\(582\) 0 0
\(583\) 37.0132 1.53293
\(584\) −17.8885 −0.740233
\(585\) 0 0
\(586\) −11.0902 −0.458131
\(587\) 1.81966 0.0751054 0.0375527 0.999295i \(-0.488044\pi\)
0.0375527 + 0.999295i \(0.488044\pi\)
\(588\) 0 0
\(589\) −61.6656 −2.54089
\(590\) 3.23607 0.133227
\(591\) 0 0
\(592\) −14.8328 −0.609625
\(593\) 24.6525 1.01236 0.506178 0.862429i \(-0.331058\pi\)
0.506178 + 0.862429i \(0.331058\pi\)
\(594\) 0 0
\(595\) 10.4164 0.427031
\(596\) 32.6525 1.33750
\(597\) 0 0
\(598\) 0 0
\(599\) 8.88854 0.363176 0.181588 0.983375i \(-0.441876\pi\)
0.181588 + 0.983375i \(0.441876\pi\)
\(600\) 0 0
\(601\) 8.11146 0.330873 0.165437 0.986220i \(-0.447097\pi\)
0.165437 + 0.986220i \(0.447097\pi\)
\(602\) 6.00000 0.244542
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) 18.9443 0.770194
\(606\) 0 0
\(607\) 40.6525 1.65003 0.825017 0.565109i \(-0.191166\pi\)
0.825017 + 0.565109i \(0.191166\pi\)
\(608\) −43.3050 −1.75625
\(609\) 0 0
\(610\) 3.52786 0.142839
\(611\) 41.8328 1.69237
\(612\) 0 0
\(613\) 7.29180 0.294513 0.147256 0.989098i \(-0.452956\pi\)
0.147256 + 0.989098i \(0.452956\pi\)
\(614\) −15.4164 −0.622156
\(615\) 0 0
\(616\) −36.7082 −1.47902
\(617\) −43.3050 −1.74339 −0.871696 0.490047i \(-0.836980\pi\)
−0.871696 + 0.490047i \(0.836980\pi\)
\(618\) 0 0
\(619\) −3.52786 −0.141797 −0.0708984 0.997484i \(-0.522587\pi\)
−0.0708984 + 0.997484i \(0.522587\pi\)
\(620\) 12.9443 0.519854
\(621\) 0 0
\(622\) 14.5066 0.581661
\(623\) 33.5410 1.34379
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −0.729490 −0.0291563
\(627\) 0 0
\(628\) 18.9443 0.755959
\(629\) 27.7771 1.10755
\(630\) 0 0
\(631\) −38.4853 −1.53208 −0.766038 0.642796i \(-0.777774\pi\)
−0.766038 + 0.642796i \(0.777774\pi\)
\(632\) −13.8197 −0.549717
\(633\) 0 0
\(634\) −17.5623 −0.697488
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) −12.4721 −0.494164
\(638\) 3.38197 0.133893
\(639\) 0 0
\(640\) 11.3820 0.449912
\(641\) −46.2361 −1.82621 −0.913107 0.407719i \(-0.866324\pi\)
−0.913107 + 0.407719i \(0.866324\pi\)
\(642\) 0 0
\(643\) −35.8328 −1.41311 −0.706554 0.707659i \(-0.749751\pi\)
−0.706554 + 0.707659i \(0.749751\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.5410 0.650798
\(647\) −11.2361 −0.441735 −0.220868 0.975304i \(-0.570889\pi\)
−0.220868 + 0.975304i \(0.570889\pi\)
\(648\) 0 0
\(649\) −28.6525 −1.12471
\(650\) 3.85410 0.151170
\(651\) 0 0
\(652\) 24.4721 0.958403
\(653\) −8.88854 −0.347836 −0.173918 0.984760i \(-0.555643\pi\)
−0.173918 + 0.984760i \(0.555643\pi\)
\(654\) 0 0
\(655\) −3.47214 −0.135668
\(656\) 8.29180 0.323740
\(657\) 0 0
\(658\) −12.4377 −0.484872
\(659\) 21.0000 0.818044 0.409022 0.912525i \(-0.365870\pi\)
0.409022 + 0.912525i \(0.365870\pi\)
\(660\) 0 0
\(661\) −37.8328 −1.47153 −0.735763 0.677239i \(-0.763176\pi\)
−0.735763 + 0.677239i \(0.763176\pi\)
\(662\) 9.81966 0.381652
\(663\) 0 0
\(664\) 8.29180 0.321784
\(665\) −23.1246 −0.896734
\(666\) 0 0
\(667\) 0 0
\(668\) −28.9443 −1.11989
\(669\) 0 0
\(670\) 7.09017 0.273917
\(671\) −31.2361 −1.20586
\(672\) 0 0
\(673\) −33.2918 −1.28330 −0.641652 0.766996i \(-0.721751\pi\)
−0.641652 + 0.766996i \(0.721751\pi\)
\(674\) 12.6525 0.487355
\(675\) 0 0
\(676\) −41.8885 −1.61110
\(677\) 20.8885 0.802812 0.401406 0.915900i \(-0.368522\pi\)
0.401406 + 0.915900i \(0.368522\pi\)
\(678\) 0 0
\(679\) −8.29180 −0.318210
\(680\) −7.76393 −0.297733
\(681\) 0 0
\(682\) 27.0557 1.03602
\(683\) −7.41641 −0.283781 −0.141890 0.989882i \(-0.545318\pi\)
−0.141890 + 0.989882i \(0.545318\pi\)
\(684\) 0 0
\(685\) 10.9443 0.418159
\(686\) −9.27051 −0.353950
\(687\) 0 0
\(688\) 6.00000 0.228748
\(689\) −42.1803 −1.60694
\(690\) 0 0
\(691\) −34.7082 −1.32036 −0.660181 0.751106i \(-0.729520\pi\)
−0.660181 + 0.751106i \(0.729520\pi\)
\(692\) −31.4164 −1.19427
\(693\) 0 0
\(694\) 10.8328 0.411208
\(695\) −0.708204 −0.0268637
\(696\) 0 0
\(697\) −15.5279 −0.588160
\(698\) 11.7082 0.443162
\(699\) 0 0
\(700\) 4.85410 0.183468
\(701\) 5.12461 0.193554 0.0967770 0.995306i \(-0.469147\pi\)
0.0967770 + 0.995306i \(0.469147\pi\)
\(702\) 0 0
\(703\) −61.6656 −2.32576
\(704\) −1.29180 −0.0486864
\(705\) 0 0
\(706\) 2.18034 0.0820582
\(707\) 12.7082 0.477941
\(708\) 0 0
\(709\) 19.8885 0.746930 0.373465 0.927644i \(-0.378170\pi\)
0.373465 + 0.927644i \(0.378170\pi\)
\(710\) 4.47214 0.167836
\(711\) 0 0
\(712\) −25.0000 −0.936915
\(713\) 0 0
\(714\) 0 0
\(715\) −34.1246 −1.27619
\(716\) 6.76393 0.252780
\(717\) 0 0
\(718\) −2.83282 −0.105720
\(719\) 11.2361 0.419035 0.209517 0.977805i \(-0.432811\pi\)
0.209517 + 0.977805i \(0.432811\pi\)
\(720\) 0 0
\(721\) −22.2492 −0.828604
\(722\) −24.9787 −0.929611
\(723\) 0 0
\(724\) −13.6180 −0.506110
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 2.11146 0.0783096 0.0391548 0.999233i \(-0.487533\pi\)
0.0391548 + 0.999233i \(0.487533\pi\)
\(728\) 41.8328 1.55043
\(729\) 0 0
\(730\) 4.94427 0.182996
\(731\) −11.2361 −0.415581
\(732\) 0 0
\(733\) −14.2918 −0.527880 −0.263940 0.964539i \(-0.585022\pi\)
−0.263940 + 0.964539i \(0.585022\pi\)
\(734\) −9.52786 −0.351680
\(735\) 0 0
\(736\) 0 0
\(737\) −62.7771 −2.31242
\(738\) 0 0
\(739\) 41.4853 1.52606 0.763031 0.646362i \(-0.223711\pi\)
0.763031 + 0.646362i \(0.223711\pi\)
\(740\) 12.9443 0.475841
\(741\) 0 0
\(742\) 12.5410 0.460395
\(743\) 10.8197 0.396935 0.198467 0.980107i \(-0.436404\pi\)
0.198467 + 0.980107i \(0.436404\pi\)
\(744\) 0 0
\(745\) −20.1803 −0.739350
\(746\) −9.81966 −0.359523
\(747\) 0 0
\(748\) 30.7426 1.12406
\(749\) 22.5836 0.825186
\(750\) 0 0
\(751\) 43.4164 1.58429 0.792144 0.610335i \(-0.208965\pi\)
0.792144 + 0.610335i \(0.208965\pi\)
\(752\) −12.4377 −0.453556
\(753\) 0 0
\(754\) −3.85410 −0.140358
\(755\) 2.47214 0.0899702
\(756\) 0 0
\(757\) −34.8328 −1.26602 −0.633010 0.774144i \(-0.718181\pi\)
−0.633010 + 0.774144i \(0.718181\pi\)
\(758\) −4.29180 −0.155885
\(759\) 0 0
\(760\) 17.2361 0.625218
\(761\) −33.0132 −1.19673 −0.598363 0.801225i \(-0.704182\pi\)
−0.598363 + 0.801225i \(0.704182\pi\)
\(762\) 0 0
\(763\) 49.2492 1.78294
\(764\) 19.4164 0.702461
\(765\) 0 0
\(766\) −12.4033 −0.448148
\(767\) 32.6525 1.17901
\(768\) 0 0
\(769\) 34.6525 1.24960 0.624800 0.780785i \(-0.285180\pi\)
0.624800 + 0.780785i \(0.285180\pi\)
\(770\) 10.1459 0.365633
\(771\) 0 0
\(772\) 9.70820 0.349406
\(773\) 52.2492 1.87927 0.939637 0.342173i \(-0.111163\pi\)
0.939637 + 0.342173i \(0.111163\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 6.18034 0.221861
\(777\) 0 0
\(778\) 13.7426 0.492698
\(779\) 34.4721 1.23509
\(780\) 0 0
\(781\) −39.5967 −1.41688
\(782\) 0 0
\(783\) 0 0
\(784\) 3.70820 0.132436
\(785\) −11.7082 −0.417884
\(786\) 0 0
\(787\) 1.88854 0.0673193 0.0336597 0.999433i \(-0.489284\pi\)
0.0336597 + 0.999433i \(0.489284\pi\)
\(788\) 24.1803 0.861389
\(789\) 0 0
\(790\) 3.81966 0.135897
\(791\) −23.8328 −0.847397
\(792\) 0 0
\(793\) 35.5967 1.26408
\(794\) 4.06888 0.144399
\(795\) 0 0
\(796\) −33.5066 −1.18761
\(797\) −6.94427 −0.245979 −0.122989 0.992408i \(-0.539248\pi\)
−0.122989 + 0.992408i \(0.539248\pi\)
\(798\) 0 0
\(799\) 23.2918 0.824005
\(800\) −5.61803 −0.198627
\(801\) 0 0
\(802\) −22.6525 −0.799887
\(803\) −43.7771 −1.54486
\(804\) 0 0
\(805\) 0 0
\(806\) −30.8328 −1.08604
\(807\) 0 0
\(808\) −9.47214 −0.333229
\(809\) −44.2361 −1.55526 −0.777629 0.628724i \(-0.783578\pi\)
−0.777629 + 0.628724i \(0.783578\pi\)
\(810\) 0 0
\(811\) −22.7082 −0.797393 −0.398696 0.917083i \(-0.630537\pi\)
−0.398696 + 0.917083i \(0.630537\pi\)
\(812\) −4.85410 −0.170346
\(813\) 0 0
\(814\) 27.0557 0.948303
\(815\) −15.1246 −0.529792
\(816\) 0 0
\(817\) 24.9443 0.872690
\(818\) −5.34752 −0.186972
\(819\) 0 0
\(820\) −7.23607 −0.252694
\(821\) 10.5836 0.369370 0.184685 0.982798i \(-0.440874\pi\)
0.184685 + 0.982798i \(0.440874\pi\)
\(822\) 0 0
\(823\) −28.7639 −1.00265 −0.501324 0.865260i \(-0.667153\pi\)
−0.501324 + 0.865260i \(0.667153\pi\)
\(824\) 16.5836 0.577717
\(825\) 0 0
\(826\) −9.70820 −0.337792
\(827\) 7.41641 0.257894 0.128947 0.991652i \(-0.458840\pi\)
0.128947 + 0.991652i \(0.458840\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) −2.29180 −0.0795494
\(831\) 0 0
\(832\) 1.47214 0.0510371
\(833\) −6.94427 −0.240605
\(834\) 0 0
\(835\) 17.8885 0.619059
\(836\) −68.2492 −2.36045
\(837\) 0 0
\(838\) 21.2361 0.733588
\(839\) −14.8885 −0.514010 −0.257005 0.966410i \(-0.582736\pi\)
−0.257005 + 0.966410i \(0.582736\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 1.12461 0.0387567
\(843\) 0 0
\(844\) 45.1246 1.55325
\(845\) 25.8885 0.890593
\(846\) 0 0
\(847\) −56.8328 −1.95280
\(848\) 12.5410 0.430660
\(849\) 0 0
\(850\) 2.14590 0.0736037
\(851\) 0 0
\(852\) 0 0
\(853\) −28.7639 −0.984858 −0.492429 0.870353i \(-0.663891\pi\)
−0.492429 + 0.870353i \(0.663891\pi\)
\(854\) −10.5836 −0.362163
\(855\) 0 0
\(856\) −16.8328 −0.575334
\(857\) 23.8885 0.816017 0.408009 0.912978i \(-0.366223\pi\)
0.408009 + 0.912978i \(0.366223\pi\)
\(858\) 0 0
\(859\) −15.7082 −0.535957 −0.267979 0.963425i \(-0.586356\pi\)
−0.267979 + 0.963425i \(0.586356\pi\)
\(860\) −5.23607 −0.178548
\(861\) 0 0
\(862\) 21.3050 0.725650
\(863\) −15.5967 −0.530919 −0.265460 0.964122i \(-0.585524\pi\)
−0.265460 + 0.964122i \(0.585524\pi\)
\(864\) 0 0
\(865\) 19.4164 0.660178
\(866\) 2.87539 0.0977097
\(867\) 0 0
\(868\) −38.8328 −1.31807
\(869\) −33.8197 −1.14725
\(870\) 0 0
\(871\) 71.5410 2.42407
\(872\) −36.7082 −1.24310
\(873\) 0 0
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 48.8328 1.64897 0.824484 0.565886i \(-0.191466\pi\)
0.824484 + 0.565886i \(0.191466\pi\)
\(878\) 6.25735 0.211175
\(879\) 0 0
\(880\) 10.1459 0.342018
\(881\) −12.7082 −0.428150 −0.214075 0.976817i \(-0.568674\pi\)
−0.214075 + 0.976817i \(0.568674\pi\)
\(882\) 0 0
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) −35.0344 −1.17834
\(885\) 0 0
\(886\) 14.6869 0.493417
\(887\) 44.5967 1.49741 0.748706 0.662902i \(-0.230675\pi\)
0.748706 + 0.662902i \(0.230675\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 6.90983 0.231618
\(891\) 0 0
\(892\) 21.0344 0.704285
\(893\) −51.7082 −1.73035
\(894\) 0 0
\(895\) −4.18034 −0.139733
\(896\) −34.1459 −1.14073
\(897\) 0 0
\(898\) 1.09017 0.0363794
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −23.4853 −0.782409
\(902\) −15.1246 −0.503594
\(903\) 0 0
\(904\) 17.7639 0.590820
\(905\) 8.41641 0.279771
\(906\) 0 0
\(907\) 26.7639 0.888682 0.444341 0.895858i \(-0.353438\pi\)
0.444341 + 0.895858i \(0.353438\pi\)
\(908\) −9.41641 −0.312494
\(909\) 0 0
\(910\) −11.5623 −0.383287
\(911\) 18.0557 0.598213 0.299106 0.954220i \(-0.403311\pi\)
0.299106 + 0.954220i \(0.403311\pi\)
\(912\) 0 0
\(913\) 20.2918 0.671560
\(914\) −3.78522 −0.125204
\(915\) 0 0
\(916\) −15.2361 −0.503414
\(917\) 10.4164 0.343980
\(918\) 0 0
\(919\) 20.1246 0.663850 0.331925 0.943306i \(-0.392302\pi\)
0.331925 + 0.943306i \(0.392302\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.45898 0.0480490
\(923\) 45.1246 1.48529
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 1.56231 0.0513406
\(927\) 0 0
\(928\) 5.61803 0.184421
\(929\) 56.8328 1.86462 0.932312 0.361655i \(-0.117788\pi\)
0.932312 + 0.361655i \(0.117788\pi\)
\(930\) 0 0
\(931\) 15.4164 0.505252
\(932\) 2.29180 0.0750703
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) −19.0000 −0.621366
\(936\) 0 0
\(937\) 19.7639 0.645660 0.322830 0.946457i \(-0.395366\pi\)
0.322830 + 0.946457i \(0.395366\pi\)
\(938\) −21.2705 −0.694507
\(939\) 0 0
\(940\) 10.8541 0.354022
\(941\) 46.0689 1.50180 0.750901 0.660414i \(-0.229619\pi\)
0.750901 + 0.660414i \(0.229619\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −9.70820 −0.315975
\(945\) 0 0
\(946\) −10.9443 −0.355829
\(947\) 12.7082 0.412961 0.206481 0.978451i \(-0.433799\pi\)
0.206481 + 0.978451i \(0.433799\pi\)
\(948\) 0 0
\(949\) 49.8885 1.61945
\(950\) −4.76393 −0.154562
\(951\) 0 0
\(952\) 23.2918 0.754891
\(953\) −19.0132 −0.615897 −0.307948 0.951403i \(-0.599642\pi\)
−0.307948 + 0.951403i \(0.599642\pi\)
\(954\) 0 0
\(955\) −12.0000 −0.388311
\(956\) 19.2361 0.622139
\(957\) 0 0
\(958\) −4.00000 −0.129234
\(959\) −32.8328 −1.06023
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −30.8328 −0.994090
\(963\) 0 0
\(964\) −11.3262 −0.364794
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) −35.1246 −1.12953 −0.564766 0.825251i \(-0.691033\pi\)
−0.564766 + 0.825251i \(0.691033\pi\)
\(968\) 42.3607 1.36152
\(969\) 0 0
\(970\) −1.70820 −0.0548471
\(971\) 23.0557 0.739894 0.369947 0.929053i \(-0.379376\pi\)
0.369947 + 0.929053i \(0.379376\pi\)
\(972\) 0 0
\(973\) 2.12461 0.0681119
\(974\) 7.41641 0.237637
\(975\) 0 0
\(976\) −10.5836 −0.338773
\(977\) 22.4721 0.718947 0.359474 0.933155i \(-0.382956\pi\)
0.359474 + 0.933155i \(0.382956\pi\)
\(978\) 0 0
\(979\) −61.1803 −1.95533
\(980\) −3.23607 −0.103372
\(981\) 0 0
\(982\) 16.0000 0.510581
\(983\) −37.5279 −1.19695 −0.598476 0.801140i \(-0.704227\pi\)
−0.598476 + 0.801140i \(0.704227\pi\)
\(984\) 0 0
\(985\) −14.9443 −0.476164
\(986\) −2.14590 −0.0683393
\(987\) 0 0
\(988\) 77.7771 2.47442
\(989\) 0 0
\(990\) 0 0
\(991\) 22.4853 0.714269 0.357134 0.934053i \(-0.383754\pi\)
0.357134 + 0.934053i \(0.383754\pi\)
\(992\) 44.9443 1.42698
\(993\) 0 0
\(994\) −13.4164 −0.425543
\(995\) 20.7082 0.656494
\(996\) 0 0
\(997\) 7.41641 0.234880 0.117440 0.993080i \(-0.462531\pi\)
0.117440 + 0.993080i \(0.462531\pi\)
\(998\) 14.6869 0.464906
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.a.k.1.1 2
3.2 odd 2 435.2.a.e.1.2 2
5.4 even 2 6525.2.a.s.1.2 2
12.11 even 2 6960.2.a.bu.1.2 2
15.2 even 4 2175.2.c.j.349.3 4
15.8 even 4 2175.2.c.j.349.2 4
15.14 odd 2 2175.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.e.1.2 2 3.2 odd 2
1305.2.a.k.1.1 2 1.1 even 1 trivial
2175.2.a.q.1.1 2 15.14 odd 2
2175.2.c.j.349.2 4 15.8 even 4
2175.2.c.j.349.3 4 15.2 even 4
6525.2.a.s.1.2 2 5.4 even 2
6960.2.a.bu.1.2 2 12.11 even 2