Newspace parameters
Level: | \( N \) | \(=\) | \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1300.y (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.3805522628\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.22581504.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4}\cdot 3 \) |
Twist minimal: | no (minimal twist has level 260) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{7} + \nu^{5} - 2\nu^{4} + \nu^{3} - 8\nu ) / 8 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{7} - 2\nu^{6} - \nu^{5} + 4\nu^{4} - \nu^{3} - 10\nu^{2} + 14\nu ) / 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{7} - 6\nu^{6} + 9\nu^{5} + 8\nu^{4} - 27\nu^{3} + 2\nu^{2} + 48\nu - 48 ) / 8 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 3\nu^{7} - 7\nu^{6} + 3\nu^{5} + 11\nu^{4} - 15\nu^{3} - 11\nu^{2} + 40\nu - 28 ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 7\nu^{7} - 18\nu^{6} + 7\nu^{5} + 32\nu^{4} - 37\nu^{3} - 42\nu^{2} + 104\nu - 64 ) / 8 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 9\nu^{7} - 26\nu^{6} + 13\nu^{5} + 36\nu^{4} - 55\nu^{3} - 34\nu^{2} + 140\nu - 104 ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -17\nu^{7} + 44\nu^{6} - 25\nu^{5} - 66\nu^{4} + 95\nu^{3} + 60\nu^{2} - 256\nu + 200 ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{7} - \beta_{6} - 2\beta_{5} + \beta_{3} + 3\beta_{2} - \beta _1 + 2 ) / 6 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{7} - \beta_{6} - 2\beta_{5} + 3\beta_{4} - 2\beta_{3} - 3\beta_{2} - 4\beta _1 + 5 ) / 6 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -5\beta_{7} - 2\beta_{6} - \beta_{5} - 9\beta_{4} - 4\beta_{3} - 2\beta _1 + 4 ) / 6 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -\beta_{7} - 2\beta_{6} + 2\beta_{5} - 2\beta_{3} - 4\beta_{2} - 3\beta _1 + 3 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -8\beta_{7} - 5\beta_{6} + 5\beta_{5} - 21\beta_{4} - \beta_{3} - 3\beta_{2} + 7\beta _1 + 22 ) / 6 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -2\beta_{7} - 17\beta_{6} + 2\beta_{5} + 15\beta_{4} + 8\beta_{3} + 3\beta_{2} + \beta _1 - 2 ) / 6 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -\beta_{7} - 13\beta_{6} - 8\beta_{5} + 30\beta_{4} + \beta_{3} + 3\beta_{2} + 17\beta _1 + 8 ) / 6 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1300\mathbb{Z}\right)^\times\).
\(n\) | \(301\) | \(651\) | \(677\) |
\(\chi(n)\) | \(\beta_{4}\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
0 | −1.16612 | − | 2.01978i | 0 | 0 | 0 | −0.346241 | − | 0.199902i | 0 | −1.21969 | + | 2.11256i | 0 | ||||||||||||||||||||||||||||||||||||
101.2 | 0 | −0.0473938 | − | 0.0820885i | 0 | 0 | 0 | −0.716063 | − | 0.413419i | 0 | 1.49551 | − | 2.59030i | 0 | |||||||||||||||||||||||||||||||||||||
101.3 | 0 | 0.800098 | + | 1.38581i | 0 | 0 | 0 | −3.75184 | − | 2.16612i | 0 | 0.219687 | − | 0.380509i | 0 | |||||||||||||||||||||||||||||||||||||
101.4 | 0 | 1.41342 | + | 2.44811i | 0 | 0 | 0 | 1.81414 | + | 1.04739i | 0 | −2.49551 | + | 4.32235i | 0 | |||||||||||||||||||||||||||||||||||||
901.1 | 0 | −1.16612 | + | 2.01978i | 0 | 0 | 0 | −0.346241 | + | 0.199902i | 0 | −1.21969 | − | 2.11256i | 0 | |||||||||||||||||||||||||||||||||||||
901.2 | 0 | −0.0473938 | + | 0.0820885i | 0 | 0 | 0 | −0.716063 | + | 0.413419i | 0 | 1.49551 | + | 2.59030i | 0 | |||||||||||||||||||||||||||||||||||||
901.3 | 0 | 0.800098 | − | 1.38581i | 0 | 0 | 0 | −3.75184 | + | 2.16612i | 0 | 0.219687 | + | 0.380509i | 0 | |||||||||||||||||||||||||||||||||||||
901.4 | 0 | 1.41342 | − | 2.44811i | 0 | 0 | 0 | 1.81414 | − | 1.04739i | 0 | −2.49551 | − | 4.32235i | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1300.2.y.b | 8 | |
5.b | even | 2 | 1 | 260.2.x.a | ✓ | 8 | |
5.c | odd | 4 | 1 | 1300.2.ba.b | 8 | ||
5.c | odd | 4 | 1 | 1300.2.ba.c | 8 | ||
13.e | even | 6 | 1 | inner | 1300.2.y.b | 8 | |
15.d | odd | 2 | 1 | 2340.2.dj.d | 8 | ||
20.d | odd | 2 | 1 | 1040.2.da.c | 8 | ||
65.l | even | 6 | 1 | 260.2.x.a | ✓ | 8 | |
65.l | even | 6 | 1 | 3380.2.f.i | 8 | ||
65.n | even | 6 | 1 | 3380.2.f.i | 8 | ||
65.r | odd | 12 | 1 | 1300.2.ba.b | 8 | ||
65.r | odd | 12 | 1 | 1300.2.ba.c | 8 | ||
65.s | odd | 12 | 1 | 3380.2.a.p | 4 | ||
65.s | odd | 12 | 1 | 3380.2.a.q | 4 | ||
195.y | odd | 6 | 1 | 2340.2.dj.d | 8 | ||
260.w | odd | 6 | 1 | 1040.2.da.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
260.2.x.a | ✓ | 8 | 5.b | even | 2 | 1 | |
260.2.x.a | ✓ | 8 | 65.l | even | 6 | 1 | |
1040.2.da.c | 8 | 20.d | odd | 2 | 1 | ||
1040.2.da.c | 8 | 260.w | odd | 6 | 1 | ||
1300.2.y.b | 8 | 1.a | even | 1 | 1 | trivial | |
1300.2.y.b | 8 | 13.e | even | 6 | 1 | inner | |
1300.2.ba.b | 8 | 5.c | odd | 4 | 1 | ||
1300.2.ba.b | 8 | 65.r | odd | 12 | 1 | ||
1300.2.ba.c | 8 | 5.c | odd | 4 | 1 | ||
1300.2.ba.c | 8 | 65.r | odd | 12 | 1 | ||
2340.2.dj.d | 8 | 15.d | odd | 2 | 1 | ||
2340.2.dj.d | 8 | 195.y | odd | 6 | 1 | ||
3380.2.a.p | 4 | 65.s | odd | 12 | 1 | ||
3380.2.a.q | 4 | 65.s | odd | 12 | 1 | ||
3380.2.f.i | 8 | 65.l | even | 6 | 1 | ||
3380.2.f.i | 8 | 65.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} - 2T_{3}^{7} + 10T_{3}^{6} - 8T_{3}^{5} + 55T_{3}^{4} - 56T_{3}^{3} + 106T_{3}^{2} + 10T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1300, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} - 2 T^{7} + 10 T^{6} - 8 T^{5} + \cdots + 1 \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 6 T^{7} + 6 T^{6} - 36 T^{5} + \cdots + 9 \)
$11$
\( (T^{2} - 3 T + 3)^{4} \)
$13$
\( T^{8} - 8 T^{7} + 16 T^{6} + \cdots + 28561 \)
$17$
\( T^{8} + 6 T^{7} + 54 T^{6} + 675 T^{4} + \cdots + 729 \)
$19$
\( T^{8} - 30 T^{6} + 867 T^{4} + \cdots + 1089 \)
$23$
\( T^{8} - 6 T^{7} + 54 T^{6} + 48 T^{5} + \cdots + 9 \)
$29$
\( T^{8} + 42 T^{6} - 192 T^{5} + \cdots + 1521 \)
$31$
\( (T^{4} + 96 T^{2} + 2112)^{2} \)
$37$
\( T^{8} + 6 T^{7} - 78 T^{6} + \cdots + 42849 \)
$41$
\( (T^{4} - 6 T^{3} - 21 T^{2} + 198 T + 1089)^{2} \)
$43$
\( T^{8} + 10 T^{7} + 166 T^{6} + \cdots + 5031049 \)
$47$
\( (T^{2} + 12)^{4} \)
$53$
\( (T^{4} + 12 T^{3} - 156 T^{2} - 1920 T - 624)^{2} \)
$59$
\( T^{8} + 24 T^{7} + 174 T^{6} + \cdots + 558009 \)
$61$
\( T^{8} + 4 T^{7} + 118 T^{6} + \cdots + 942841 \)
$67$
\( T^{8} - 54 T^{7} + 1290 T^{6} + \cdots + 1083681 \)
$71$
\( T^{8} + 36 T^{7} + 414 T^{6} + \cdots + 45198729 \)
$73$
\( T^{8} + 264 T^{6} + 21168 T^{4} + \cdots + 2509056 \)
$79$
\( (T^{4} + 8 T^{3} - 180 T^{2} - 1504 T - 368)^{2} \)
$83$
\( T^{8} + 480 T^{6} + 63936 T^{4} + \cdots + 331776 \)
$89$
\( T^{8} + 24 T^{7} + 174 T^{6} + \cdots + 13689 \)
$97$
\( T^{8} - 30 T^{7} + 246 T^{6} + \cdots + 12981609 \)
show more
show less