Defining parameters
Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 130.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(130, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 110 | 30 | 80 |
Cusp forms | 102 | 30 | 72 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(130, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
130.6.b.a | $12$ | $20.850$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(-80\) | \(0\) | \(q-4\beta _{5}q^{2}+(2\beta _{5}+\beta _{8})q^{3}-2^{4}q^{4}+\cdots\) |
130.6.b.b | $18$ | $20.850$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(-80\) | \(0\) | \(q-4\beta _{4}q^{2}+(\beta _{1}+2\beta _{4})q^{3}-2^{4}q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(130, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(130, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)