Newspace parameters
Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 130.p (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.03805522628\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{12})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
Defining polynomial: |
\( x^{16} - 4 x^{13} - 48 x^{12} + 16 x^{11} + 8 x^{10} + 80 x^{9} + 2208 x^{8} + 760 x^{7} + 192 x^{6} + 1696 x^{5} - 2812 x^{4} - 2080 x^{3} + 128 x^{2} - 1024 x + 4096 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 4 x^{13} - 48 x^{12} + 16 x^{11} + 8 x^{10} + 80 x^{9} + 2208 x^{8} + 760 x^{7} + 192 x^{6} + 1696 x^{5} - 2812 x^{4} - 2080 x^{3} + 128 x^{2} - 1024 x + 4096 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 590814673 \nu^{15} - 4146468380 \nu^{14} - 928390744 \nu^{13} + 4089687260 \nu^{12} + 11354140000 \nu^{11} + \cdots - 16628864598016 ) / 104859315460224 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 238350271 \nu^{15} + 6776112136 \nu^{14} + 920962592 \nu^{13} + 1417547900 \nu^{12} - 17408263760 \nu^{11} + \cdots - 1698553709056 ) / 24672780108288 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 42599 \nu^{15} + 44468 \nu^{14} - 981520 \nu^{13} + 201412 \nu^{12} + 1784920 \nu^{11} + 1523816 \nu^{10} + 45902632 \nu^{9} - 19363096 \nu^{8} + \cdots + 953416704 ) / 3150915456 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 12187170977 \nu^{15} + 112830647620 \nu^{14} - 929509456 \nu^{13} - 44571751012 \nu^{12} - 1059059762912 \nu^{11} + \cdots - 17112277705216 ) / 419437261840896 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 1265139977 \nu^{15} - 1178805226 \nu^{14} + 5432135497 \nu^{13} + 22313466160 \nu^{12} + 49666391246 \nu^{11} + \cdots - 38434909738112 ) / 26214828865056 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 1638690067 \nu^{15} + 2114100244 \nu^{14} - 13423970953 \nu^{13} + 22733755088 \nu^{12} + 78329121796 \nu^{11} + \cdots - 4170710020480 ) / 26214828865056 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 931071 \nu^{15} + 170396 \nu^{14} - 177872 \nu^{13} + 201796 \nu^{12} - 45497056 \nu^{11} + 7757456 \nu^{10} + 1353304 \nu^{9} - 109124848 \nu^{8} + \cdots - 12832193536 ) / 12603661824 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 9852329051 \nu^{15} + 28705092392 \nu^{14} + 47979745276 \nu^{13} + 39990919804 \nu^{12} + 396996647936 \nu^{11} + \cdots - 27683541191168 ) / 104859315460224 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 5879837650 \nu^{15} - 12865387787 \nu^{14} + 11969268317 \nu^{13} + 23302404986 \nu^{12} + 345665726062 \nu^{11} + \cdots - 4094491643392 ) / 26214828865056 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 28207661905 \nu^{15} - 232377364 \nu^{14} + 1044233224 \nu^{13} - 118518889004 \nu^{12} - 1347064271392 \nu^{11} + \cdots - 12479663080448 ) / 104859315460224 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 38410768049 \nu^{15} + 34463647156 \nu^{14} - 14862048280 \nu^{13} - 159419819020 \nu^{12} - 1962435314384 \nu^{11} + \cdots + 6777896482304 ) / 104859315460224 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 38453963605 \nu^{15} + 1001037668 \nu^{14} + 27774368104 \nu^{13} - 190478280212 \nu^{12} - 1817356748560 \nu^{11} + \cdots + 165237149091328 ) / 104859315460224 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 38686340969 \nu^{15} - 43195556 \nu^{14} + 33462609488 \nu^{13} - 197381780260 \nu^{12} - 1825885905320 \nu^{11} + \cdots - 138661529586688 ) / 104859315460224 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 10245718021 \nu^{15} - 12016563769 \nu^{14} - 7887648452 \nu^{13} - 43717796048 \nu^{12} - 434972084266 \nu^{11} + \cdots + 7461651612160 ) / 26214828865056 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{15} - \beta_{12} - \beta_{10} + \beta_{9} - 4\beta_{5} + 4\beta_{3} \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{12} - \beta_{10} - \beta_{9} - \beta_{7} + \beta_{6} - 6\beta_{2} \)
|
\(\nu^{4}\) | \(=\) |
\( -8\beta_{13} + \beta_{11} + 24\beta_{8} - 8\beta_{7} - 8\beta_{6} - \beta_{2} + \beta _1 + 24 \)
|
\(\nu^{5}\) | \(=\) |
\( 9 \beta_{15} - 9 \beta_{14} - 8 \beta_{13} - \beta_{12} - 9 \beta_{10} + \beta_{9} + 4 \beta_{8} - \beta_{7} - 9 \beta_{6} - 4 \beta_{5} - 40 \beta_{4} + 4 \beta_{3} + 40 \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 56\beta_{15} - 58\beta_{12} - 2\beta_{10} - 2\beta_{9} - 14\beta_{4} + 160\beta_{3} - 14\beta_{2} \)
|
\(\nu^{7}\) | \(=\) |
\( - 56 \beta_{15} - 56 \beta_{14} - 72 \beta_{13} - 56 \beta_{12} + 274 \beta_{11} + 16 \beta_{10} - 72 \beta_{9} + 56 \beta_{8} - 72 \beta_{7} - 16 \beta_{6} + 56 \beta_{5} - 274 \beta_{2} + 56 \)
|
\(\nu^{8}\) | \(=\) |
\( - 418 \beta_{14} - 32 \beta_{13} + 144 \beta_{11} + 1096 \beta_{8} - 386 \beta_{7} - 418 \beta_{6} - 144 \beta_{4} + 144 \beta_1 \)
|
\(\nu^{9}\) | \(=\) |
\( 176 \beta_{15} - 176 \beta_{14} + 176 \beta_{13} - 562 \beta_{12} - 386 \beta_{10} - 386 \beta_{9} + 386 \beta_{7} - 386 \beta_{6} - 1900 \beta_{4} + 576 \beta_{3} - 576 \)
|
\(\nu^{10}\) | \(=\) |
\( - 352 \beta_{15} - 352 \beta_{12} + 1314 \beta_{11} + 2672 \beta_{10} - 3024 \beta_{9} + 7600 \beta_{5} - 1314 \beta_{2} - 1314 \beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( - 4338 \beta_{15} - 4338 \beta_{14} - 2672 \beta_{13} + 1666 \beta_{12} + 13296 \beta_{11} + 4338 \beta_{10} - 1666 \beta_{9} + 5256 \beta_{8} - 1666 \beta_{7} - 4338 \beta_{6} + 5256 \beta_{5} - 5256 \beta_{3} \)
|
\(\nu^{12}\) | \(=\) |
\( -18640\beta_{14} + 18640\beta_{13} + 3332\beta_{7} - 3332\beta_{6} - 11260\beta_{4} + 11260\beta_{2} - 53184 \)
|
\(\nu^{13}\) | \(=\) |
\( - 18640 \beta_{15} + 18640 \beta_{14} + 33232 \beta_{13} - 18640 \beta_{12} + 14592 \beta_{10} - 33232 \beta_{9} - 45040 \beta_{8} + 33232 \beta_{7} + 14592 \beta_{6} + 45040 \beta_{5} + \cdots - 45040 \)
|
\(\nu^{14}\) | \(=\) |
\( - 160260 \beta_{15} + 131076 \beta_{12} + 92864 \beta_{11} + 160260 \beta_{10} - 131076 \beta_{9} + 375184 \beta_{5} + 92864 \beta_{4} - 375184 \beta_{3} - 92864 \beta_1 \)
|
\(\nu^{15}\) | \(=\) |
\( - 122048 \beta_{15} - 122048 \beta_{14} + 122048 \beta_{13} + 253124 \beta_{12} + 131076 \beta_{10} + 131076 \beta_{9} + 131076 \beta_{7} - 131076 \beta_{6} - 371456 \beta_{3} + \cdots - 371456 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(\beta_{3}\) | \(-\beta_{5}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
0.866025 | + | 0.500000i | −0.640364 | − | 2.38987i | 0.500000 | + | 0.866025i | −0.606329 | − | 2.15229i | 0.640364 | − | 2.38987i | −0.551051 | − | 0.954448i | 1.00000i | −2.70334 | + | 1.56078i | 0.551051 | − | 2.16710i | ||||||||||||||||||||||||||||||||||||||||||||||||||
7.2 | 0.866025 | + | 0.500000i | −0.316559 | − | 1.18141i | 0.500000 | + | 0.866025i | 1.44768 | + | 1.70418i | 0.316559 | − | 1.18141i | −0.401632 | − | 0.695647i | 1.00000i | 1.30255 | − | 0.752028i | 0.401632 | + | 2.19970i | |||||||||||||||||||||||||||||||||||||||||||||||||||
7.3 | 0.866025 | + | 0.500000i | 0.250788 | + | 0.935952i | 0.500000 | + | 0.866025i | −2.23384 | − | 0.0997335i | −0.250788 | + | 0.935952i | 1.88470 | + | 3.26439i | 1.00000i | 1.78496 | − | 1.03055i | −1.88470 | − | 1.20329i | |||||||||||||||||||||||||||||||||||||||||||||||||||
7.4 | 0.866025 | + | 0.500000i | 0.706135 | + | 2.63533i | 0.500000 | + | 0.866025i | 0.892496 | − | 2.05023i | −0.706135 | + | 2.63533i | −1.79804 | − | 3.11430i | 1.00000i | −3.84827 | + | 2.22180i | 1.79804 | − | 1.32930i | |||||||||||||||||||||||||||||||||||||||||||||||||||
37.1 | −0.866025 | + | 0.500000i | −2.63533 | − | 0.706135i | 0.500000 | − | 0.866025i | 0.892496 | + | 2.05023i | 2.63533 | − | 0.706135i | 1.79804 | − | 3.11430i | 1.00000i | 3.84827 | + | 2.22180i | −1.79804 | − | 1.32930i | |||||||||||||||||||||||||||||||||||||||||||||||||||
37.2 | −0.866025 | + | 0.500000i | −0.935952 | − | 0.250788i | 0.500000 | − | 0.866025i | −2.23384 | + | 0.0997335i | 0.935952 | − | 0.250788i | −1.88470 | + | 3.26439i | 1.00000i | −1.78496 | − | 1.03055i | 1.88470 | − | 1.20329i | |||||||||||||||||||||||||||||||||||||||||||||||||||
37.3 | −0.866025 | + | 0.500000i | 1.18141 | + | 0.316559i | 0.500000 | − | 0.866025i | 1.44768 | − | 1.70418i | −1.18141 | + | 0.316559i | 0.401632 | − | 0.695647i | 1.00000i | −1.30255 | − | 0.752028i | −0.401632 | + | 2.19970i | |||||||||||||||||||||||||||||||||||||||||||||||||||
37.4 | −0.866025 | + | 0.500000i | 2.38987 | + | 0.640364i | 0.500000 | − | 0.866025i | −0.606329 | + | 2.15229i | −2.38987 | + | 0.640364i | 0.551051 | − | 0.954448i | 1.00000i | 2.70334 | + | 1.56078i | −0.551051 | − | 2.16710i | |||||||||||||||||||||||||||||||||||||||||||||||||||
93.1 | 0.866025 | − | 0.500000i | −0.640364 | + | 2.38987i | 0.500000 | − | 0.866025i | −0.606329 | + | 2.15229i | 0.640364 | + | 2.38987i | −0.551051 | + | 0.954448i | − | 1.00000i | −2.70334 | − | 1.56078i | 0.551051 | + | 2.16710i | ||||||||||||||||||||||||||||||||||||||||||||||||||
93.2 | 0.866025 | − | 0.500000i | −0.316559 | + | 1.18141i | 0.500000 | − | 0.866025i | 1.44768 | − | 1.70418i | 0.316559 | + | 1.18141i | −0.401632 | + | 0.695647i | − | 1.00000i | 1.30255 | + | 0.752028i | 0.401632 | − | 2.19970i | ||||||||||||||||||||||||||||||||||||||||||||||||||
93.3 | 0.866025 | − | 0.500000i | 0.250788 | − | 0.935952i | 0.500000 | − | 0.866025i | −2.23384 | + | 0.0997335i | −0.250788 | − | 0.935952i | 1.88470 | − | 3.26439i | − | 1.00000i | 1.78496 | + | 1.03055i | −1.88470 | + | 1.20329i | ||||||||||||||||||||||||||||||||||||||||||||||||||
93.4 | 0.866025 | − | 0.500000i | 0.706135 | − | 2.63533i | 0.500000 | − | 0.866025i | 0.892496 | + | 2.05023i | −0.706135 | − | 2.63533i | −1.79804 | + | 3.11430i | − | 1.00000i | −3.84827 | − | 2.22180i | 1.79804 | + | 1.32930i | ||||||||||||||||||||||||||||||||||||||||||||||||||
123.1 | −0.866025 | − | 0.500000i | −2.63533 | + | 0.706135i | 0.500000 | + | 0.866025i | 0.892496 | − | 2.05023i | 2.63533 | + | 0.706135i | 1.79804 | + | 3.11430i | − | 1.00000i | 3.84827 | − | 2.22180i | −1.79804 | + | 1.32930i | ||||||||||||||||||||||||||||||||||||||||||||||||||
123.2 | −0.866025 | − | 0.500000i | −0.935952 | + | 0.250788i | 0.500000 | + | 0.866025i | −2.23384 | − | 0.0997335i | 0.935952 | + | 0.250788i | −1.88470 | − | 3.26439i | − | 1.00000i | −1.78496 | + | 1.03055i | 1.88470 | + | 1.20329i | ||||||||||||||||||||||||||||||||||||||||||||||||||
123.3 | −0.866025 | − | 0.500000i | 1.18141 | − | 0.316559i | 0.500000 | + | 0.866025i | 1.44768 | + | 1.70418i | −1.18141 | − | 0.316559i | 0.401632 | + | 0.695647i | − | 1.00000i | −1.30255 | + | 0.752028i | −0.401632 | − | 2.19970i | ||||||||||||||||||||||||||||||||||||||||||||||||||
123.4 | −0.866025 | − | 0.500000i | 2.38987 | − | 0.640364i | 0.500000 | + | 0.866025i | −0.606329 | − | 2.15229i | −2.38987 | − | 0.640364i | 0.551051 | + | 0.954448i | − | 1.00000i | 2.70334 | − | 1.56078i | −0.551051 | + | 2.16710i | ||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.t | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 130.2.p.b | ✓ | 16 |
5.b | even | 2 | 1 | 650.2.t.g | 16 | ||
5.c | odd | 4 | 1 | 130.2.s.b | yes | 16 | |
5.c | odd | 4 | 1 | 650.2.w.g | 16 | ||
13.f | odd | 12 | 1 | 130.2.s.b | yes | 16 | |
65.o | even | 12 | 1 | 650.2.t.g | 16 | ||
65.s | odd | 12 | 1 | 650.2.w.g | 16 | ||
65.t | even | 12 | 1 | inner | 130.2.p.b | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
130.2.p.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
130.2.p.b | ✓ | 16 | 65.t | even | 12 | 1 | inner |
130.2.s.b | yes | 16 | 5.c | odd | 4 | 1 | |
130.2.s.b | yes | 16 | 13.f | odd | 12 | 1 | |
650.2.t.g | 16 | 5.b | even | 2 | 1 | ||
650.2.t.g | 16 | 65.o | even | 12 | 1 | ||
650.2.w.g | 16 | 5.c | odd | 4 | 1 | ||
650.2.w.g | 16 | 65.s | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} + 4 T_{3}^{13} - 48 T_{3}^{12} - 16 T_{3}^{11} + 8 T_{3}^{10} - 80 T_{3}^{9} + 2208 T_{3}^{8} - 760 T_{3}^{7} + 192 T_{3}^{6} - 1696 T_{3}^{5} - 2812 T_{3}^{4} + 2080 T_{3}^{3} + 128 T_{3}^{2} + 1024 T_{3} + 4096 \)
acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{4} \)
$3$
\( T^{16} + 4 T^{13} - 48 T^{12} + \cdots + 4096 \)
$5$
\( (T^{8} + T^{7} + 4 T^{6} + 19 T^{5} + 18 T^{4} + \cdots + 625)^{2} \)
$7$
\( T^{16} + 29 T^{14} + 606 T^{12} + \cdots + 20736 \)
$11$
\( T^{16} - 6 T^{15} + 9 T^{14} + \cdots + 2408704 \)
$13$
\( T^{16} - 2 T^{15} - 14 T^{13} + \cdots + 815730721 \)
$17$
\( T^{16} + 16 T^{15} + \cdots + 15513698916 \)
$19$
\( T^{16} + 3 T^{14} - 146 T^{13} + \cdots + 589824 \)
$23$
\( T^{16} + 6 T^{15} + \cdots + 6996987904 \)
$29$
\( T^{16} + 6 T^{15} - 59 T^{14} + \cdots + 2143296 \)
$31$
\( T^{16} + 464 T^{13} + \cdots + 345518244864 \)
$37$
\( T^{16} + 20 T^{15} + \cdots + 856089081 \)
$41$
\( T^{16} + 44 T^{15} + 719 T^{14} + \cdots + 8596624 \)
$43$
\( T^{16} + 132 T^{14} + \cdots + 9764601856 \)
$47$
\( (T^{8} - 26 T^{7} + 167 T^{6} + \cdots + 75232)^{2} \)
$53$
\( T^{16} + 24 T^{15} + \cdots + 7629498409 \)
$59$
\( T^{16} + 46 T^{15} + \cdots + 2479944646656 \)
$61$
\( T^{16} - 6 T^{15} + 165 T^{14} + \cdots + 1633284 \)
$67$
\( T^{16} - 12 T^{15} + \cdots + 123184152576 \)
$71$
\( T^{16} - 6 T^{15} + \cdots + 5473632256 \)
$73$
\( T^{16} + 606 T^{14} + \cdots + 903408428484 \)
$79$
\( T^{16} + 268 T^{14} + \cdots + 14017536 \)
$83$
\( (T^{8} + 32 T^{7} + 120 T^{6} + \cdots - 5965248)^{2} \)
$89$
\( T^{16} + 24 T^{15} + \cdots + 2057050114564 \)
$97$
\( T^{16} + \cdots + 478697992372224 \)
show more
show less