Newspace parameters
Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 130.p (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.03805522628\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{12})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
Defining polynomial: |
\( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 24x^{10} + 192x^{8} + 680x^{6} + 1104x^{4} + 672x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 7\nu^{10} + 136\nu^{8} + 668\nu^{6} + 702\nu^{4} + 176\nu^{2} + 380\nu + 1728 ) / 760 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 7\nu^{10} + 136\nu^{8} + 668\nu^{6} + 702\nu^{4} + 176\nu^{2} - 380\nu + 1728 ) / 760 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 4\nu^{11} + 87\nu^{9} + 576\nu^{7} + 1504\nu^{5} + 1542\nu^{3} + 456\nu + 20 ) / 40 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 60 \nu^{11} + 36 \nu^{10} - 1315 \nu^{9} + 808 \nu^{8} - 8820 \nu^{7} + 5634 \nu^{6} - 23280 \nu^{5} + 15336 \nu^{4} - 23250 \nu^{3} + 14368 \nu^{2} - 5040 \nu + 744 ) / 760 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 11 \nu^{11} + 89 \nu^{10} - 173 \nu^{9} + 1892 \nu^{8} - 154 \nu^{7} + 11886 \nu^{6} + 5194 \nu^{5} + 27654 \nu^{4} + 19402 \nu^{3} + 21292 \nu^{2} + 19216 \nu + 1016 ) / 760 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 60 \nu^{11} - 36 \nu^{10} - 1315 \nu^{9} - 808 \nu^{8} - 8820 \nu^{7} - 5634 \nu^{6} - 23280 \nu^{5} - 15336 \nu^{4} - 23250 \nu^{3} - 14368 \nu^{2} - 5040 \nu - 744 ) / 760 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 11 \nu^{11} + 82 \nu^{10} + 173 \nu^{9} + 1756 \nu^{8} + 154 \nu^{7} + 11218 \nu^{6} - 5194 \nu^{5} + 26952 \nu^{4} - 19402 \nu^{3} + 21116 \nu^{2} - 19596 \nu - 712 ) / 760 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 36 \nu^{11} + 125 \nu^{10} - 808 \nu^{9} + 2700 \nu^{8} - 5634 \nu^{7} + 17520 \nu^{6} - 15336 \nu^{5} + 42990 \nu^{4} - 14368 \nu^{3} + 35280 \nu^{2} - 1504 \nu + 240 ) / 760 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 3 \nu^{11} - 134 \nu^{10} + 99 \nu^{9} - 2902 \nu^{8} + 1182 \nu^{7} - 18976 \nu^{6} + 6218 \nu^{5} - 47584 \nu^{4} + 14054 \nu^{3} - 41152 \nu^{2} + 10892 \nu - 1756 ) / 760 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 105 \nu^{11} - 178 \nu^{10} - 2135 \nu^{9} - 3784 \nu^{8} - 11920 \nu^{7} - 23772 \nu^{6} - 18890 \nu^{5} - 55308 \nu^{4} + 9330 \nu^{3} - 42204 \nu^{2} + 28040 \nu - 132 ) / 760 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -421\nu^{10} - 9048\nu^{8} - 58144\nu^{6} - 140586\nu^{4} - 112968\nu^{2} + 380\nu - 784 ) / 760 \)
|
\(\nu\) | \(=\) |
\( -\beta_{2} + \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{11} + 2\beta_{7} - \beta_{6} + 2\beta_{5} + \beta_{4} + \beta _1 - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( - 2 \beta_{11} - 4 \beta_{8} - 2 \beta_{7} + 5 \beta_{6} - 2 \beta_{5} + 5 \beta_{4} + 6 \beta_{3} + 10 \beta_{2} - 10 \beta _1 - 3 \)
|
\(\nu^{4}\) | \(=\) |
\( - 13 \beta_{11} + 2 \beta_{10} - 4 \beta_{9} + 2 \beta_{8} - 27 \beta_{7} + 14 \beta_{6} - 29 \beta_{5} - 16 \beta_{4} + 2 \beta_{3} + 3 \beta_{2} - 7 \beta _1 + 28 \)
|
\(\nu^{5}\) | \(=\) |
\( 32 \beta_{11} - 5 \beta_{10} + 59 \beta_{8} + 24 \beta_{7} - 77 \beta_{6} + 35 \beta_{5} - 72 \beta_{4} - 95 \beta_{3} - 118 \beta_{2} + 110 \beta _1 + 50 \)
|
\(\nu^{6}\) | \(=\) |
\( 168 \beta_{11} - 24 \beta_{10} + 48 \beta_{9} - 24 \beta_{8} + 352 \beta_{7} - 174 \beta_{6} + 376 \beta_{5} + 198 \beta_{4} - 24 \beta_{3} - 56 \beta_{2} + 80 \beta _1 - 292 \)
|
\(\nu^{7}\) | \(=\) |
\( - 422 \beta_{11} + 96 \beta_{10} - 748 \beta_{8} - 270 \beta_{7} + 1008 \beta_{6} - 478 \beta_{5} + 912 \beta_{4} + 1264 \beta_{3} + 1440 \beta_{2} - 1288 \beta _1 - 680 \)
|
\(\nu^{8}\) | \(=\) |
\( - 2122 \beta_{11} + 270 \beta_{10} - 540 \beta_{9} + 270 \beta_{8} - 4460 \beta_{7} + 2132 \beta_{6} - 4730 \beta_{5} - 2402 \beta_{4} + 270 \beta_{3} + 792 \beta_{2} - 1006 \beta _1 + 3460 \)
|
\(\nu^{9}\) | \(=\) |
\( 5316 \beta_{11} - 1368 \beta_{10} + 9264 \beta_{8} + 3156 \beta_{7} - 12698 \beta_{6} + 6108 \beta_{5} - 11330 \beta_{4} - 16044 \beta_{3} - 17724 \beta_{2} + 15564 \beta _1 + 8706 \)
|
\(\nu^{10}\) | \(=\) |
\( 26474 \beta_{11} - 3156 \beta_{10} + 6312 \beta_{9} - 3156 \beta_{8} + 55718 \beta_{7} - 26196 \beta_{6} + 58874 \beta_{5} + 29352 \beta_{4} - 3156 \beta_{3} - 10290 \beta_{2} + 12642 \beta _1 - 42312 \)
|
\(\nu^{11}\) | \(=\) |
\( - 66116 \beta_{11} + 17810 \beta_{10} - 114422 \beta_{8} - 38016 \beta_{7} + 158054 \beta_{6} - 76406 \beta_{5} + 140244 \beta_{4} + 200358 \beta_{3} + 218764 \beta_{2} - 190664 \beta _1 - 109084 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(-\beta_{4} - \beta_{6}\) | \(\beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−0.866025 | − | 0.500000i | −0.776134 | − | 2.89657i | 0.500000 | + | 0.866025i | 2.12044 | − | 0.709753i | −0.776134 | + | 2.89657i | −0.638961 | − | 1.10671i | − | 1.00000i | −5.18966 | + | 2.99625i | −2.19123 | − | 0.445554i | |||||||||||||||||||||||||||||||||||||
7.2 | −0.866025 | − | 0.500000i | −0.0387670 | − | 0.144681i | 0.500000 | + | 0.866025i | 0.105914 | + | 2.23356i | −0.0387670 | + | 0.144681i | 1.10259 | + | 1.90974i | − | 1.00000i | 2.57865 | − | 1.48878i | 1.02506 | − | 1.98727i | ||||||||||||||||||||||||||||||||||||||
7.3 | −0.866025 | − | 0.500000i | 0.814901 | + | 3.04125i | 0.500000 | + | 0.866025i | −2.22635 | + | 0.208246i | 0.814901 | − | 3.04125i | 0.402397 | + | 0.696972i | − | 1.00000i | −5.98707 | + | 3.45663i | 2.03220 | + | 0.932829i | ||||||||||||||||||||||||||||||||||||||
37.1 | 0.866025 | − | 0.500000i | −1.75811 | − | 0.471085i | 0.500000 | − | 0.866025i | −1.28703 | − | 1.82854i | −1.75811 | + | 0.471085i | 1.48736 | − | 2.57618i | − | 1.00000i | 0.270964 | + | 0.156441i | −2.02887 | − | 0.940048i | ||||||||||||||||||||||||||||||||||||||
37.2 | 0.866025 | − | 0.500000i | 0.660414 | + | 0.176957i | 0.500000 | − | 0.866025i | 0.483457 | + | 2.18318i | 0.660414 | − | 0.176957i | 0.189447 | − | 0.328132i | − | 1.00000i | −2.19324 | − | 1.26627i | 1.51028 | + | 1.64896i | ||||||||||||||||||||||||||||||||||||||
37.3 | 0.866025 | − | 0.500000i | 1.09770 | + | 0.294128i | 0.500000 | − | 0.866025i | 0.803571 | − | 2.08669i | 1.09770 | − | 0.294128i | −2.54283 | + | 4.40431i | − | 1.00000i | −1.47964 | − | 0.854273i | −0.347432 | − | 2.20891i | ||||||||||||||||||||||||||||||||||||||
93.1 | −0.866025 | + | 0.500000i | −0.776134 | + | 2.89657i | 0.500000 | − | 0.866025i | 2.12044 | + | 0.709753i | −0.776134 | − | 2.89657i | −0.638961 | + | 1.10671i | 1.00000i | −5.18966 | − | 2.99625i | −2.19123 | + | 0.445554i | |||||||||||||||||||||||||||||||||||||||
93.2 | −0.866025 | + | 0.500000i | −0.0387670 | + | 0.144681i | 0.500000 | − | 0.866025i | 0.105914 | − | 2.23356i | −0.0387670 | − | 0.144681i | 1.10259 | − | 1.90974i | 1.00000i | 2.57865 | + | 1.48878i | 1.02506 | + | 1.98727i | |||||||||||||||||||||||||||||||||||||||
93.3 | −0.866025 | + | 0.500000i | 0.814901 | − | 3.04125i | 0.500000 | − | 0.866025i | −2.22635 | − | 0.208246i | 0.814901 | + | 3.04125i | 0.402397 | − | 0.696972i | 1.00000i | −5.98707 | − | 3.45663i | 2.03220 | − | 0.932829i | |||||||||||||||||||||||||||||||||||||||
123.1 | 0.866025 | + | 0.500000i | −1.75811 | + | 0.471085i | 0.500000 | + | 0.866025i | −1.28703 | + | 1.82854i | −1.75811 | − | 0.471085i | 1.48736 | + | 2.57618i | 1.00000i | 0.270964 | − | 0.156441i | −2.02887 | + | 0.940048i | |||||||||||||||||||||||||||||||||||||||
123.2 | 0.866025 | + | 0.500000i | 0.660414 | − | 0.176957i | 0.500000 | + | 0.866025i | 0.483457 | − | 2.18318i | 0.660414 | + | 0.176957i | 0.189447 | + | 0.328132i | 1.00000i | −2.19324 | + | 1.26627i | 1.51028 | − | 1.64896i | |||||||||||||||||||||||||||||||||||||||
123.3 | 0.866025 | + | 0.500000i | 1.09770 | − | 0.294128i | 0.500000 | + | 0.866025i | 0.803571 | + | 2.08669i | 1.09770 | + | 0.294128i | −2.54283 | − | 4.40431i | 1.00000i | −1.47964 | + | 0.854273i | −0.347432 | + | 2.20891i | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.t | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 130.2.p.a | ✓ | 12 |
5.b | even | 2 | 1 | 650.2.t.e | 12 | ||
5.c | odd | 4 | 1 | 130.2.s.a | yes | 12 | |
5.c | odd | 4 | 1 | 650.2.w.e | 12 | ||
13.f | odd | 12 | 1 | 130.2.s.a | yes | 12 | |
65.o | even | 12 | 1 | 650.2.t.e | 12 | ||
65.s | odd | 12 | 1 | 650.2.w.e | 12 | ||
65.t | even | 12 | 1 | inner | 130.2.p.a | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
130.2.p.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
130.2.p.a | ✓ | 12 | 65.t | even | 12 | 1 | inner |
130.2.s.a | yes | 12 | 5.c | odd | 4 | 1 | |
130.2.s.a | yes | 12 | 13.f | odd | 12 | 1 | |
650.2.t.e | 12 | 5.b | even | 2 | 1 | ||
650.2.t.e | 12 | 65.o | even | 12 | 1 | ||
650.2.w.e | 12 | 5.c | odd | 4 | 1 | ||
650.2.w.e | 12 | 65.s | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} + 12 T_{3}^{10} + 4 T_{3}^{9} + 24 T_{3}^{8} + 24 T_{3}^{7} - 280 T_{3}^{6} + 48 T_{3}^{5} + 600 T_{3}^{4} - 568 T_{3}^{3} + 144 T_{3}^{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{3} \)
$3$
\( T^{12} + 12 T^{10} + 4 T^{9} + 24 T^{8} + \cdots + 4 \)
$5$
\( T^{12} + 6 T^{10} + 8 T^{9} + \cdots + 15625 \)
$7$
\( T^{12} + 21 T^{10} - 64 T^{9} + \cdots + 169 \)
$11$
\( T^{12} - 6 T^{11} + 9 T^{10} - 28 T^{9} + \cdots + 6889 \)
$13$
\( T^{12} + 12 T^{11} + 69 T^{10} + \cdots + 4826809 \)
$17$
\( T^{12} - 12 T^{11} + 30 T^{10} + 32 T^{9} + \cdots + 4 \)
$19$
\( T^{12} - 36 T^{11} + 627 T^{10} + \cdots + 221841 \)
$23$
\( T^{12} - 6 T^{11} + 66 T^{10} + \cdots + 23078416 \)
$29$
\( T^{12} - 6 T^{11} - 42 T^{10} + \cdots + 8248384 \)
$31$
\( T^{12} + 24 T^{11} + 288 T^{10} + \cdots + 26152996 \)
$37$
\( T^{12} + 93 T^{10} - 44 T^{9} + \cdots + 769129 \)
$41$
\( T^{12} - 18 T^{11} + 126 T^{10} + \cdots + 1690000 \)
$43$
\( T^{12} - 36 T^{10} + 200 T^{9} + \cdots + 22886656 \)
$47$
\( (T^{6} - 6 T^{5} - 105 T^{4} + 196 T^{3} + \cdots - 6047)^{2} \)
$53$
\( T^{12} - 18 T^{11} + 162 T^{10} + \cdots + 36881329 \)
$59$
\( T^{12} - 18 T^{11} - 6 T^{10} + 852 T^{9} + \cdots + 576 \)
$61$
\( T^{12} - 18 T^{11} + \cdots + 307721764 \)
$67$
\( T^{12} - 12 T^{11} - 12 T^{10} + \cdots + 2304 \)
$71$
\( T^{12} - 18 T^{11} + \cdots + 880427584 \)
$73$
\( T^{12} + 300 T^{10} + \cdots + 704902500 \)
$79$
\( T^{12} + 444 T^{10} + \cdots + 1427177284 \)
$83$
\( (T^{6} + 24 T^{5} + 36 T^{4} - 2466 T^{3} + \cdots - 31050)^{2} \)
$89$
\( T^{12} - 6 T^{11} + 159 T^{10} + \cdots + 39828721 \)
$97$
\( T^{12} + 102 T^{11} + \cdots + 553217613796 \)
show more
show less