Properties

Label 130.2.l
Level $130$
Weight $2$
Character orbit 130.l
Rep. character $\chi_{130}(101,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $2$
Sturm bound $42$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(42\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(130, [\chi])\).

Total New Old
Modular forms 52 12 40
Cusp forms 36 12 24
Eisenstein series 16 0 16

Trace form

\( 12 q + 6 q^{4} - 6 q^{9} + 2 q^{10} - 6 q^{11} + 12 q^{13} - 12 q^{14} + 12 q^{15} - 6 q^{16} - 18 q^{19} - 12 q^{25} + 24 q^{27} + 12 q^{29} + 4 q^{30} - 60 q^{33} - 6 q^{35} + 6 q^{36} - 12 q^{37} - 24 q^{38}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(130, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
130.2.l.a 130.l 13.e $4$ $1.038$ \(\Q(\zeta_{12})\) None 130.2.l.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(1+\zeta_{12}-\zeta_{12}^{2}-2\zeta_{12}^{3})q^{3}+\cdots\)
130.2.l.b 130.l 13.e $8$ $1.038$ 8.0.22581504.2 None 130.2.l.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+(\beta _{2}-\beta _{4}-\beta _{7})q^{3}+(1-\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(130, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(130, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)