Defining parameters
Level: | \( N \) | \(=\) | \( 130 = 2 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 130.l (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(130, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 12 | 40 |
Cusp forms | 36 | 12 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(130, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
130.2.l.a | $4$ | $1.038$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(1+\zeta_{12}-\zeta_{12}^{2}-2\zeta_{12}^{3})q^{3}+\cdots\) |
130.2.l.b | $8$ | $1.038$ | 8.0.22581504.2 | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+(\beta _{2}-\beta _{4}-\beta _{7})q^{3}+(1-\beta _{4}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(130, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(130, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)