Properties

Label 130.2.j.c
Level $130$
Weight $2$
Character orbit 130.j
Analytic conductor $1.038$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} + ( - i + 1) q^{3} - q^{4} + ( - i + 2) q^{5} + ( - i - 1) q^{6} - 2 q^{7} + i q^{8} + i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} + ( - i + 1) q^{3} - q^{4} + ( - i + 2) q^{5} + ( - i - 1) q^{6} - 2 q^{7} + i q^{8} + i q^{9} + ( - 2 i - 1) q^{10} + (i - 1) q^{11} + (i - 1) q^{12} + ( - 3 i + 2) q^{13} + 2 i q^{14} + ( - 3 i + 1) q^{15} + q^{16} + (i - 1) q^{17} + q^{18} + (3 i - 3) q^{19} + (i - 2) q^{20} + (2 i - 2) q^{21} + (i + 1) q^{22} + (i + 1) q^{23} + (i + 1) q^{24} + ( - 4 i + 3) q^{25} + ( - 2 i - 3) q^{26} + (4 i + 4) q^{27} + 2 q^{28} + 8 i q^{29} + ( - i - 3) q^{30} + (i + 1) q^{31} - i q^{32} + 2 i q^{33} + (i + 1) q^{34} + (2 i - 4) q^{35} - i q^{36} + 8 q^{37} + (3 i + 3) q^{38} + ( - 5 i - 1) q^{39} + (2 i + 1) q^{40} + ( - 7 i - 7) q^{41} + (2 i + 2) q^{42} + (i + 1) q^{43} + ( - i + 1) q^{44} + (2 i + 1) q^{45} + ( - i + 1) q^{46} - 10 q^{47} + ( - i + 1) q^{48} - 3 q^{49} + ( - 3 i - 4) q^{50} + 2 i q^{51} + (3 i - 2) q^{52} + ( - i + 1) q^{53} + ( - 4 i + 4) q^{54} + (3 i - 1) q^{55} - 2 i q^{56} + 6 i q^{57} + 8 q^{58} + ( - 9 i - 9) q^{59} + (3 i - 1) q^{60} + 2 q^{61} + ( - i + 1) q^{62} - 2 i q^{63} - q^{64} + ( - 8 i + 1) q^{65} + 2 q^{66} - 12 i q^{67} + ( - i + 1) q^{68} + 2 q^{69} + (4 i + 2) q^{70} + (5 i + 5) q^{71} - q^{72} - 6 i q^{73} - 8 i q^{74} + ( - 7 i - 1) q^{75} + ( - 3 i + 3) q^{76} + ( - 2 i + 2) q^{77} + (i - 5) q^{78} - 10 i q^{79} + ( - i + 2) q^{80} + 5 q^{81} + (7 i - 7) q^{82} - 18 q^{83} + ( - 2 i + 2) q^{84} + (3 i - 1) q^{85} + ( - i + 1) q^{86} + (8 i + 8) q^{87} + ( - i - 1) q^{88} + (11 i + 11) q^{89} + ( - i + 2) q^{90} + (6 i - 4) q^{91} + ( - i - 1) q^{92} + 2 q^{93} + 10 i q^{94} + (9 i - 3) q^{95} + ( - i - 1) q^{96} - 14 i q^{97} + 3 i q^{98} + ( - i - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{4} + 4 q^{5} - 2 q^{6} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 2 q^{4} + 4 q^{5} - 2 q^{6} - 4 q^{7} - 2 q^{10} - 2 q^{11} - 2 q^{12} + 4 q^{13} + 2 q^{15} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 6 q^{19} - 4 q^{20} - 4 q^{21} + 2 q^{22} + 2 q^{23} + 2 q^{24} + 6 q^{25} - 6 q^{26} + 8 q^{27} + 4 q^{28} - 6 q^{30} + 2 q^{31} + 2 q^{34} - 8 q^{35} + 16 q^{37} + 6 q^{38} - 2 q^{39} + 2 q^{40} - 14 q^{41} + 4 q^{42} + 2 q^{43} + 2 q^{44} + 2 q^{45} + 2 q^{46} - 20 q^{47} + 2 q^{48} - 6 q^{49} - 8 q^{50} - 4 q^{52} + 2 q^{53} + 8 q^{54} - 2 q^{55} + 16 q^{58} - 18 q^{59} - 2 q^{60} + 4 q^{61} + 2 q^{62} - 2 q^{64} + 2 q^{65} + 4 q^{66} + 2 q^{68} + 4 q^{69} + 4 q^{70} + 10 q^{71} - 2 q^{72} - 2 q^{75} + 6 q^{76} + 4 q^{77} - 10 q^{78} + 4 q^{80} + 10 q^{81} - 14 q^{82} - 36 q^{83} + 4 q^{84} - 2 q^{85} + 2 q^{86} + 16 q^{87} - 2 q^{88} + 22 q^{89} + 4 q^{90} - 8 q^{91} - 2 q^{92} + 4 q^{93} - 6 q^{95} - 2 q^{96} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(i\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
1.00000i
1.00000i
1.00000i 1.00000 1.00000i −1.00000 2.00000 1.00000i −1.00000 1.00000i −2.00000 1.00000i 1.00000i −1.00000 2.00000i
83.1 1.00000i 1.00000 + 1.00000i −1.00000 2.00000 + 1.00000i −1.00000 + 1.00000i −2.00000 1.00000i 1.00000i −1.00000 + 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.2.j.c yes 2
3.b odd 2 1 1170.2.w.a 2
4.b odd 2 1 1040.2.cd.c 2
5.b even 2 1 650.2.j.a 2
5.c odd 4 1 130.2.g.b 2
5.c odd 4 1 650.2.g.c 2
13.d odd 4 1 130.2.g.b 2
15.e even 4 1 1170.2.m.b 2
20.e even 4 1 1040.2.bg.b 2
39.f even 4 1 1170.2.m.b 2
52.f even 4 1 1040.2.bg.b 2
65.f even 4 1 inner 130.2.j.c yes 2
65.g odd 4 1 650.2.g.c 2
65.k even 4 1 650.2.j.a 2
195.u odd 4 1 1170.2.w.a 2
260.l odd 4 1 1040.2.cd.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.g.b 2 5.c odd 4 1
130.2.g.b 2 13.d odd 4 1
130.2.j.c yes 2 1.a even 1 1 trivial
130.2.j.c yes 2 65.f even 4 1 inner
650.2.g.c 2 5.c odd 4 1
650.2.g.c 2 65.g odd 4 1
650.2.j.a 2 5.b even 2 1
650.2.j.a 2 65.k even 4 1
1040.2.bg.b 2 20.e even 4 1
1040.2.bg.b 2 52.f even 4 1
1040.2.cd.c 2 4.b odd 2 1
1040.2.cd.c 2 260.l odd 4 1
1170.2.m.b 2 15.e even 4 1
1170.2.m.b 2 39.f even 4 1
1170.2.w.a 2 3.b odd 2 1
1170.2.w.a 2 195.u odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} + 2 \) acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 5 \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} + 64 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$37$ \( (T - 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$47$ \( (T + 10)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} + 18T + 162 \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( T^{2} + 100 \) Copy content Toggle raw display
$83$ \( (T + 18)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 22T + 242 \) Copy content Toggle raw display
$97$ \( T^{2} + 196 \) Copy content Toggle raw display
show more
show less