Properties

Label 130.2.a
Level $130$
Weight $2$
Character orbit 130.a
Rep. character $\chi_{130}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $42$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(42\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(130))\).

Total New Old
Modular forms 24 3 21
Cusp forms 17 3 14
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(13\)FrickeDim
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(2\)

Trace form

\( 3 q + q^{2} + 3 q^{4} + q^{5} + 4 q^{6} - 8 q^{7} + q^{8} - q^{9} - q^{10} - 8 q^{11} + q^{13} - 4 q^{15} + 3 q^{16} - 2 q^{17} - 3 q^{18} + q^{20} + 4 q^{22} + 8 q^{23} + 4 q^{24} + 3 q^{25} - q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(130))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 13
130.2.a.a 130.a 1.a $1$ $1.038$ \(\Q\) None 130.2.a.a \(-1\) \(-2\) \(1\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+q^{5}+2q^{6}-4q^{7}+\cdots\)
130.2.a.b 130.a 1.a $1$ $1.038$ \(\Q\) None 130.2.a.b \(1\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}-3q^{9}+q^{10}+\cdots\)
130.2.a.c 130.a 1.a $1$ $1.038$ \(\Q\) None 130.2.a.c \(1\) \(2\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}-q^{5}+2q^{6}-4q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(130))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(130)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)