Properties

Label 13.9
Level 13
Weight 9
Dimension 50
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 126
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(126\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(13))\).

Total New Old
Modular forms 62 62 0
Cusp forms 50 50 0
Eisenstein series 12 12 0

Trace form

\( 50 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 6 q^{5} - 6 q^{6} + 2524 q^{7} - 6 q^{8} + 17490 q^{9} - 26886 q^{10} - 25080 q^{11} + 86094 q^{13} + 105972 q^{14} - 6810 q^{15} - 327686 q^{16} + 97644 q^{17} - 784608 q^{18}+ \cdots - 1484420112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(13))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
13.9.d \(\chi_{13}(5, \cdot)\) 13.9.d.a 18 2
13.9.f \(\chi_{13}(2, \cdot)\) 13.9.f.a 32 4