Properties

Label 13.8.a.b
Level $13$
Weight $8$
Character orbit 13.a
Self dual yes
Analytic conductor $4.061$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,8,Mod(1,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.06100533129\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{337}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{337})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 9) q^{2} + (3 \beta + 21) q^{3} + (19 \beta + 37) q^{4} + ( - 11 \beta - 171) q^{5} + ( - 51 \beta - 441) q^{6} + (9 \beta - 1009) q^{7} + ( - 99 \beta - 777) q^{8} + (135 \beta - 990) q^{9}+ \cdots + (451620 \beta - 6465420) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 19 q^{2} + 45 q^{3} + 93 q^{4} - 353 q^{5} - 933 q^{6} - 2009 q^{7} - 1653 q^{8} - 1845 q^{9} + 5207 q^{10} - 1810 q^{11} + 11697 q^{12} + 4394 q^{13} + 17569 q^{14} - 13503 q^{15} + 20481 q^{16}+ \cdots - 12479220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.67878
−8.67878
−18.6788 50.0363 220.897 −277.467 −934.618 −921.891 −1735.20 316.635 5182.74
1.2 −0.321220 −5.03634 −127.897 −75.5334 1.61777 −1087.11 82.1992 −2161.64 24.2629
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.8.a.b 2
3.b odd 2 1 117.8.a.c 2
4.b odd 2 1 208.8.a.g 2
5.b even 2 1 325.8.a.b 2
13.b even 2 1 169.8.a.b 2
13.d odd 4 2 169.8.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.8.a.b 2 1.a even 1 1 trivial
117.8.a.c 2 3.b odd 2 1
169.8.a.b 2 13.b even 2 1
169.8.b.b 4 13.d odd 4 2
208.8.a.g 2 4.b odd 2 1
325.8.a.b 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 19T_{2} + 6 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(13))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 19T + 6 \) Copy content Toggle raw display
$3$ \( T^{2} - 45T - 252 \) Copy content Toggle raw display
$5$ \( T^{2} + 353T + 20958 \) Copy content Toggle raw display
$7$ \( T^{2} + 2009 T + 1002196 \) Copy content Toggle raw display
$11$ \( T^{2} + 1810 T - 31775952 \) Copy content Toggle raw display
$13$ \( (T - 2197)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 25361 T - 177216678 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1646636688 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 3712002048 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 1049753004 \) Copy content Toggle raw display
$31$ \( T^{2} - 39744 T - 634808464 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 7868862106 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 115487893152 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 11546069484 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 669689975052 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 648240166944 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 140057008272 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 4947441275696 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 5405517426256 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 24787522246284 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 10156859198164 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 22472459585984 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 34361915476704 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 10393898367132 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 45398949212204 \) Copy content Toggle raw display
show more
show less