Properties

Label 13.8.a
Level $13$
Weight $8$
Character orbit 13.a
Rep. character $\chi_{13}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $3$
Sturm bound $9$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(9\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(13))\).

Total New Old
Modular forms 9 7 2
Cusp forms 7 7 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(13\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(5\)\(4\)\(1\)\(4\)\(4\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(4\)\(3\)\(1\)\(3\)\(3\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 7 q + 6 q^{2} + 52 q^{3} + 318 q^{4} - 390 q^{5} - 84 q^{6} + 1056 q^{7} - 1320 q^{8} + 4791 q^{9} - 2238 q^{10} - 7620 q^{11} + 10086 q^{12} - 2197 q^{13} + 13014 q^{14} - 21704 q^{15} - 27694 q^{16} - 17694 q^{17}+ \cdots - 30302100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(13))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 13
13.8.a.a 13.a 1.a $1$ $4.061$ \(\Q\) None 13.8.a.a \(10\) \(-73\) \(-295\) \(1373\) $-$ $\mathrm{SU}(2)$ \(q+10q^{2}-73q^{3}-28q^{4}-295q^{5}+\cdots\)
13.8.a.b 13.a 1.a $2$ $4.061$ \(\Q(\sqrt{337}) \) None 13.8.a.b \(-19\) \(45\) \(-353\) \(-2009\) $-$ $\mathrm{SU}(2)$ \(q+(-9-\beta )q^{2}+(21+3\beta )q^{3}+(37+19\beta )q^{4}+\cdots\)
13.8.a.c 13.a 1.a $4$ $4.061$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 13.8.a.c \(15\) \(80\) \(258\) \(1692\) $+$ $\mathrm{SU}(2)$ \(q+(4-\beta _{1})q^{2}+(21-2\beta _{1}+\beta _{2})q^{3}+\cdots\)