Properties

Label 13.8
Level 13
Weight 8
Dimension 43
Nonzero newspaces 4
Newform subspaces 6
Sturm bound 112
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 6 \)
Sturm bound: \(112\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(13))\).

Total New Old
Modular forms 55 53 2
Cusp forms 43 43 0
Eisenstein series 12 10 2

Trace form

\( 43 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 6 q^{5} - 6 q^{6} - 1520 q^{7} + 4602 q^{8} - 5838 q^{9} - 9966 q^{10} + 3948 q^{11} + 34548 q^{12} + 14958 q^{13} - 10860 q^{14} - 41154 q^{15} - 81926 q^{16} - 65769 q^{17}+ \cdots - 2915364 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(13))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
13.8.a \(\chi_{13}(1, \cdot)\) 13.8.a.a 1 1
13.8.a.b 2
13.8.a.c 4
13.8.b \(\chi_{13}(12, \cdot)\) 13.8.b.a 6 1
13.8.c \(\chi_{13}(3, \cdot)\) 13.8.c.a 16 2
13.8.e \(\chi_{13}(4, \cdot)\) 13.8.e.a 14 2