Properties

Label 13.6.a.b
Level $13$
Weight $6$
Character orbit 13.a
Self dual yes
Analytic conductor $2.085$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,6,Mod(1,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.08498965757\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.168897.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 100x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 2) q^{2} + ( - \beta_{2} - \beta_1 + 3) q^{3} + (4 \beta_{2} + \beta_1 + 40) q^{4} + ( - \beta_{2} - 7 \beta_1 + 21) q^{5} + ( - 10 \beta_{2} - \beta_1 - 66) q^{6} + ( - 3 \beta_{2} - 3 \beta_1 - 19) q^{7}+ \cdots + ( - 1928 \beta_{2} + 4720 \beta_1 - 21684) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 7 q^{2} + 8 q^{3} + 121 q^{4} + 56 q^{5} - 199 q^{6} - 60 q^{7} + 327 q^{8} - 191 q^{9} - 1291 q^{10} + 556 q^{11} - 1091 q^{12} + 507 q^{13} - 793 q^{14} + 1972 q^{15} + 2785 q^{16} + 908 q^{17}+ \cdots - 60332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 100x + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 3\nu - 68 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{2} - 3\beta _1 + 68 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.6486
2.68079
8.96778
−8.64858 10.2870 42.7979 92.1784 −88.9676 2.86088 −93.3863 −137.178 −797.212
1.2 4.68079 13.5120 −10.0902 15.4272 63.2466 12.5359 −197.015 −60.4272 72.2115
1.3 10.9678 −15.7989 88.2923 −51.6056 −173.279 −75.3967 617.402 6.60562 −565.999
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.6.a.b 3
3.b odd 2 1 117.6.a.d 3
4.b odd 2 1 208.6.a.j 3
5.b even 2 1 325.6.a.c 3
5.c odd 4 2 325.6.b.c 6
7.b odd 2 1 637.6.a.b 3
8.b even 2 1 832.6.a.s 3
8.d odd 2 1 832.6.a.t 3
13.b even 2 1 169.6.a.b 3
13.d odd 4 2 169.6.b.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.6.a.b 3 1.a even 1 1 trivial
117.6.a.d 3 3.b odd 2 1
169.6.a.b 3 13.b even 2 1
169.6.b.b 6 13.d odd 4 2
208.6.a.j 3 4.b odd 2 1
325.6.a.c 3 5.b even 2 1
325.6.b.c 6 5.c odd 4 2
637.6.a.b 3 7.b odd 2 1
832.6.a.s 3 8.b even 2 1
832.6.a.t 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 7T_{2}^{2} - 84T_{2} + 444 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(13))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 7 T^{2} + \cdots + 444 \) Copy content Toggle raw display
$3$ \( T^{3} - 8 T^{2} + \cdots + 2196 \) Copy content Toggle raw display
$5$ \( T^{3} - 56 T^{2} + \cdots + 73386 \) Copy content Toggle raw display
$7$ \( T^{3} + 60 T^{2} + \cdots + 2704 \) Copy content Toggle raw display
$11$ \( T^{3} - 556 T^{2} + \cdots + 39698256 \) Copy content Toggle raw display
$13$ \( (T - 169)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 908 T^{2} + \cdots + 77884638 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 1415854512 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 5045833728 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 221025174456 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 1607044480 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 46212896426 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 29456898048 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 281385762060 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 696870885384 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 4415410372608 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 1932677407728 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 18650455523968 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 2080268535536 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 37395101110464 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 5649650834008 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 2044988893184 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 17971240920768 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 28887869991912 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 12102379894216 \) Copy content Toggle raw display
show more
show less