gp: [N,k,chi] = [13,6,Mod(1,13)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(13, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("13.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 3 − 7 T 2 2 − 84 T 2 + 444 T_{2}^{3} - 7T_{2}^{2} - 84T_{2} + 444 T 2 3 − 7 T 2 2 − 8 4 T 2 + 4 4 4
T2^3 - 7*T2^2 - 84*T2 + 444
acting on S 6 n e w ( Γ 0 ( 13 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(13)) S 6 n e w ( Γ 0 ( 1 3 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 − 7 T 2 + ⋯ + 444 T^{3} - 7 T^{2} + \cdots + 444 T 3 − 7 T 2 + ⋯ + 4 4 4
T^3 - 7*T^2 - 84*T + 444
3 3 3
T 3 − 8 T 2 + ⋯ + 2196 T^{3} - 8 T^{2} + \cdots + 2196 T 3 − 8 T 2 + ⋯ + 2 1 9 6
T^3 - 8*T^2 - 237*T + 2196
5 5 5
T 3 − 56 T 2 + ⋯ + 73386 T^{3} - 56 T^{2} + \cdots + 73386 T 3 − 5 6 T 2 + ⋯ + 7 3 3 8 6
T^3 - 56*T^2 - 4131*T + 73386
7 7 7
T 3 + 60 T 2 + ⋯ + 2704 T^{3} + 60 T^{2} + \cdots + 2704 T 3 + 6 0 T 2 + ⋯ + 2 7 0 4
T^3 + 60*T^2 - 1125*T + 2704
11 11 1 1
T 3 − 556 T 2 + ⋯ + 39698256 T^{3} - 556 T^{2} + \cdots + 39698256 T 3 − 5 5 6 T 2 + ⋯ + 3 9 6 9 8 2 5 6
T^3 - 556*T^2 - 78420*T + 39698256
13 13 1 3
( T − 169 ) 3 (T - 169)^{3} ( T − 1 6 9 ) 3
(T - 169)^3
17 17 1 7
T 3 − 908 T 2 + ⋯ + 77884638 T^{3} - 908 T^{2} + \cdots + 77884638 T 3 − 9 0 8 T 2 + ⋯ + 7 7 8 8 4 6 3 8
T^3 - 908*T^2 - 1417827*T + 77884638
19 19 1 9
T 3 + ⋯ + 1415854512 T^{3} + \cdots + 1415854512 T 3 + ⋯ + 1 4 1 5 8 5 4 5 1 2
T^3 - 148*T^2 - 5297972*T + 1415854512
23 23 2 3
T 3 + ⋯ + 5045833728 T^{3} + \cdots + 5045833728 T 3 + ⋯ + 5 0 4 5 8 3 3 7 2 8
T^3 - 3624*T^2 + 786048*T + 5045833728
29 29 2 9
T 3 + ⋯ − 221025174456 T^{3} + \cdots - 221025174456 T 3 + ⋯ − 2 2 1 0 2 5 1 7 4 4 5 6
T^3 + 8758*T^2 - 22280052*T - 221025174456
31 31 3 1
T 3 + ⋯ − 1607044480 T^{3} + \cdots - 1607044480 T 3 + ⋯ − 1 6 0 7 0 4 4 4 8 0
T^3 + 2608*T^2 - 10731952*T - 1607044480
37 37 3 7
T 3 + ⋯ + 46212896426 T^{3} + \cdots + 46212896426 T 3 + ⋯ + 4 6 2 1 2 8 9 6 4 2 6
T^3 + 20632*T^2 + 99943613*T + 46212896426
41 41 4 1
T 3 + ⋯ + 29456898048 T^{3} + \cdots + 29456898048 T 3 + ⋯ + 2 9 4 5 6 8 9 8 0 4 8
T^3 + 10998*T^2 - 38709120*T + 29456898048
43 43 4 3
T 3 + ⋯ + 281385762060 T^{3} + \cdots + 281385762060 T 3 + ⋯ + 2 8 1 3 8 5 7 6 2 0 6 0
T^3 - 2032*T^2 - 80653829*T + 281385762060
47 47 4 7
T 3 + ⋯ − 696870885384 T^{3} + \cdots - 696870885384 T 3 + ⋯ − 6 9 6 8 7 0 8 8 5 3 8 4
T^3 - 34260*T^2 + 299766555*T - 696870885384
53 53 5 3
T 3 + ⋯ − 4415410372608 T^{3} + \cdots - 4415410372608 T 3 + ⋯ − 4 4 1 5 4 1 0 3 7 2 6 0 8
T^3 + 12570*T^2 - 699425280*T - 4415410372608
59 59 5 9
T 3 + ⋯ − 1932677407728 T^{3} + \cdots - 1932677407728 T 3 + ⋯ − 1 9 3 2 6 7 7 4 0 7 7 2 8
T^3 - 63948*T^2 + 1046124780*T - 1932677407728
61 61 6 1
T 3 + ⋯ − 18650455523968 T^{3} + \cdots - 18650455523968 T 3 + ⋯ − 1 8 6 5 0 4 5 5 5 2 3 9 6 8
T^3 + 12754*T^2 - 1152934528*T - 18650455523968
67 67 6 7
T 3 + ⋯ + 2080268535536 T^{3} + \cdots + 2080268535536 T 3 + ⋯ + 2 0 8 0 2 6 8 5 3 5 5 3 6
T^3 - 56132*T^2 + 481597100*T + 2080268535536
71 71 7 1
T 3 + ⋯ + 37395101110464 T^{3} + \cdots + 37395101110464 T 3 + ⋯ + 3 7 3 9 5 1 0 1 1 1 0 4 6 4
T^3 - 77580*T^2 + 620949795*T + 37395101110464
73 73 7 3
T 3 + ⋯ + 5649650834008 T^{3} + \cdots + 5649650834008 T 3 + ⋯ + 5 6 4 9 6 5 0 8 3 4 0 0 8
T^3 + 43026*T^2 - 1169104212*T + 5649650834008
79 79 7 9
T 3 + ⋯ − 2044988893184 T^{3} + \cdots - 2044988893184 T 3 + ⋯ − 2 0 4 4 9 8 8 8 9 3 1 8 4
T^3 + 61872*T^2 - 1519042752*T - 2044988893184
83 83 8 3
T 3 + ⋯ + 17971240920768 T^{3} + \cdots + 17971240920768 T 3 + ⋯ + 1 7 9 7 1 2 4 0 9 2 0 7 6 8
T^3 - 98092*T^2 - 1863905040*T + 17971240920768
89 89 8 9
T 3 + ⋯ − 28887869991912 T^{3} + \cdots - 28887869991912 T 3 + ⋯ − 2 8 8 8 7 8 6 9 9 9 1 9 1 2
T^3 - 33694*T^2 - 7596222420*T - 28887869991912
97 97 9 7
T 3 + ⋯ − 12102379894216 T^{3} + \cdots - 12102379894216 T 3 + ⋯ − 1 2 1 0 2 3 7 9 8 9 4 2 1 6
T^3 - 76334*T^2 + 1723377980*T - 12102379894216
show more
show less