Properties

Label 13.6.a.a
Level $13$
Weight $6$
Character orbit 13.a
Self dual yes
Analytic conductor $2.085$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,6,Mod(1,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.08498965757\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{2} + (6 \beta - 17) q^{3} + (5 \beta - 24) q^{4} + ( - 40 \beta - 1) q^{5} + ( - \beta + 10) q^{6} + (70 \beta - 53) q^{7} + (41 \beta + 92) q^{8} + ( - 168 \beta + 190) q^{9} + (121 \beta + 162) q^{10}+ \cdots + (40488 \beta - 100148) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{2} - 28 q^{3} - 43 q^{4} - 42 q^{5} + 19 q^{6} - 36 q^{7} + 225 q^{8} + 212 q^{9} + 445 q^{10} - 376 q^{11} + 857 q^{12} - 338 q^{13} - 505 q^{14} - 1452 q^{15} + 465 q^{16} - 2630 q^{17} + 898 q^{18}+ \cdots - 159808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−4.56155 −1.63068 −11.1922 −103.462 7.43845 126.309 197.024 −240.341 471.948
1.2 −0.438447 −26.3693 −31.8078 61.4621 11.5616 −162.309 27.9763 452.341 −26.9479
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.6.a.a 2
3.b odd 2 1 117.6.a.c 2
4.b odd 2 1 208.6.a.h 2
5.b even 2 1 325.6.a.b 2
5.c odd 4 2 325.6.b.b 4
7.b odd 2 1 637.6.a.a 2
8.b even 2 1 832.6.a.p 2
8.d odd 2 1 832.6.a.i 2
13.b even 2 1 169.6.a.a 2
13.d odd 4 2 169.6.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.6.a.a 2 1.a even 1 1 trivial
117.6.a.c 2 3.b odd 2 1
169.6.a.a 2 13.b even 2 1
169.6.b.a 4 13.d odd 4 2
208.6.a.h 2 4.b odd 2 1
325.6.a.b 2 5.b even 2 1
325.6.b.b 4 5.c odd 4 2
637.6.a.a 2 7.b odd 2 1
832.6.a.i 2 8.d odd 2 1
832.6.a.p 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 5T_{2} + 2 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(13))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 28T + 43 \) Copy content Toggle raw display
$5$ \( T^{2} + 42T - 6359 \) Copy content Toggle raw display
$7$ \( T^{2} + 36T - 20501 \) Copy content Toggle raw display
$11$ \( T^{2} + 376T + 5356 \) Copy content Toggle raw display
$13$ \( (T + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2630 T + 1659593 \) Copy content Toggle raw display
$19$ \( T^{2} + 312T + 21004 \) Copy content Toggle raw display
$23$ \( T^{2} + 2624 T - 6800144 \) Copy content Toggle raw display
$29$ \( T^{2} + 812T + 155044 \) Copy content Toggle raw display
$31$ \( T^{2} - 7720 T + 14046608 \) Copy content Toggle raw display
$37$ \( T^{2} + 16858 T + 56659241 \) Copy content Toggle raw display
$41$ \( T^{2} - 7840 T - 827392 \) Copy content Toggle raw display
$43$ \( T^{2} - 2420 T - 93138877 \) Copy content Toggle raw display
$47$ \( T^{2} - 9972 T - 372552629 \) Copy content Toggle raw display
$53$ \( T^{2} + 43720 T + 280413712 \) Copy content Toggle raw display
$59$ \( T^{2} + 38936 T + 59682572 \) Copy content Toggle raw display
$61$ \( T^{2} - 1984 T - 366282304 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1222318028 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1078437091 \) Copy content Toggle raw display
$73$ \( T^{2} - 74412 T - 79726364 \) Copy content Toggle raw display
$79$ \( T^{2} + 55296 T + 361555696 \) Copy content Toggle raw display
$83$ \( T^{2} + 75712 T + 68289536 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1045666948 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 14352168316 \) Copy content Toggle raw display
show more
show less