# Properties

 Label 13.4.e.b.4.1 Level $13$ Weight $4$ Character 13.4 Analytic conductor $0.767$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [13,4,Mod(4,13)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(13, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([1]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("13.4");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 13.e (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.767024830075$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 4.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 13.4 Dual form 13.4.e.b.10.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.50000 + 0.866025i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-2.50000 - 4.33013i) q^{4} -1.73205i q^{5} +(-3.00000 + 1.73205i) q^{6} +(-12.0000 + 6.92820i) q^{7} -22.5167i q^{8} +(11.5000 + 19.9186i) q^{9} +O(q^{10})$$ $$q+(1.50000 + 0.866025i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-2.50000 - 4.33013i) q^{4} -1.73205i q^{5} +(-3.00000 + 1.73205i) q^{6} +(-12.0000 + 6.92820i) q^{7} -22.5167i q^{8} +(11.5000 + 19.9186i) q^{9} +(1.50000 - 2.59808i) q^{10} +(12.0000 + 6.92820i) q^{11} +10.0000 q^{12} +(45.5000 + 11.2583i) q^{13} -24.0000 q^{14} +(3.00000 + 1.73205i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-58.5000 - 101.325i) q^{17} +39.8372i q^{18} +(-99.0000 + 57.1577i) q^{19} +(-7.50000 + 4.33013i) q^{20} -27.7128i q^{21} +(12.0000 + 20.7846i) q^{22} +(39.0000 - 67.5500i) q^{23} +(39.0000 + 22.5167i) q^{24} +122.000 q^{25} +(58.5000 + 56.2917i) q^{26} -100.000 q^{27} +(60.0000 + 34.6410i) q^{28} +(70.5000 - 122.110i) q^{29} +(3.00000 + 5.19615i) q^{30} +155.885i q^{31} +(-157.500 + 90.9327i) q^{32} +(-24.0000 + 13.8564i) q^{33} -202.650i q^{34} +(12.0000 + 20.7846i) q^{35} +(57.5000 - 99.5929i) q^{36} +(-124.500 - 71.8801i) q^{37} -198.000 q^{38} +(-65.0000 + 67.5500i) q^{39} -39.0000 q^{40} +(235.500 + 135.966i) q^{41} +(24.0000 - 41.5692i) q^{42} +(-52.0000 - 90.0666i) q^{43} -69.2820i q^{44} +(34.5000 - 19.9186i) q^{45} +(117.000 - 67.5500i) q^{46} +301.377i q^{47} +(-1.00000 - 1.73205i) q^{48} +(-75.5000 + 130.770i) q^{49} +(183.000 + 105.655i) q^{50} +234.000 q^{51} +(-65.0000 - 225.167i) q^{52} +93.0000 q^{53} +(-150.000 - 86.6025i) q^{54} +(12.0000 - 20.7846i) q^{55} +(156.000 + 270.200i) q^{56} -228.631i q^{57} +(211.500 - 122.110i) q^{58} +(-246.000 + 142.028i) q^{59} -17.3205i q^{60} +(-72.5000 - 125.574i) q^{61} +(-135.000 + 233.827i) q^{62} +(-276.000 - 159.349i) q^{63} -307.000 q^{64} +(19.5000 - 78.8083i) q^{65} -48.0000 q^{66} +(-681.000 - 393.176i) q^{67} +(-292.500 + 506.625i) q^{68} +(78.0000 + 135.100i) q^{69} +41.5692i q^{70} +(915.000 - 528.275i) q^{71} +(448.500 - 258.942i) q^{72} +458.993i q^{73} +(-124.500 - 215.640i) q^{74} +(-122.000 + 211.310i) q^{75} +(495.000 + 285.788i) q^{76} -192.000 q^{77} +(-156.000 + 45.0333i) q^{78} +1276.00 q^{79} +(1.50000 + 0.866025i) q^{80} +(-210.500 + 364.597i) q^{81} +(235.500 + 407.898i) q^{82} -789.815i q^{83} +(-120.000 + 69.2820i) q^{84} +(-175.500 + 101.325i) q^{85} -180.133i q^{86} +(141.000 + 244.219i) q^{87} +(156.000 - 270.200i) q^{88} +(-846.000 - 488.438i) q^{89} +69.0000 q^{90} +(-624.000 + 180.133i) q^{91} -390.000 q^{92} +(-270.000 - 155.885i) q^{93} +(-261.000 + 452.065i) q^{94} +(99.0000 + 171.473i) q^{95} -363.731i q^{96} +(174.000 - 100.459i) q^{97} +(-226.500 + 130.770i) q^{98} +318.697i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 3 q^{2} - 2 q^{3} - 5 q^{4} - 6 q^{6} - 24 q^{7} + 23 q^{9}+O(q^{10})$$ 2 * q + 3 * q^2 - 2 * q^3 - 5 * q^4 - 6 * q^6 - 24 * q^7 + 23 * q^9 $$2 q + 3 q^{2} - 2 q^{3} - 5 q^{4} - 6 q^{6} - 24 q^{7} + 23 q^{9} + 3 q^{10} + 24 q^{11} + 20 q^{12} + 91 q^{13} - 48 q^{14} + 6 q^{15} - q^{16} - 117 q^{17} - 198 q^{19} - 15 q^{20} + 24 q^{22} + 78 q^{23} + 78 q^{24} + 244 q^{25} + 117 q^{26} - 200 q^{27} + 120 q^{28} + 141 q^{29} + 6 q^{30} - 315 q^{32} - 48 q^{33} + 24 q^{35} + 115 q^{36} - 249 q^{37} - 396 q^{38} - 130 q^{39} - 78 q^{40} + 471 q^{41} + 48 q^{42} - 104 q^{43} + 69 q^{45} + 234 q^{46} - 2 q^{48} - 151 q^{49} + 366 q^{50} + 468 q^{51} - 130 q^{52} + 186 q^{53} - 300 q^{54} + 24 q^{55} + 312 q^{56} + 423 q^{58} - 492 q^{59} - 145 q^{61} - 270 q^{62} - 552 q^{63} - 614 q^{64} + 39 q^{65} - 96 q^{66} - 1362 q^{67} - 585 q^{68} + 156 q^{69} + 1830 q^{71} + 897 q^{72} - 249 q^{74} - 244 q^{75} + 990 q^{76} - 384 q^{77} - 312 q^{78} + 2552 q^{79} + 3 q^{80} - 421 q^{81} + 471 q^{82} - 240 q^{84} - 351 q^{85} + 282 q^{87} + 312 q^{88} - 1692 q^{89} + 138 q^{90} - 1248 q^{91} - 780 q^{92} - 540 q^{93} - 522 q^{94} + 198 q^{95} + 348 q^{97} - 453 q^{98}+O(q^{100})$$ 2 * q + 3 * q^2 - 2 * q^3 - 5 * q^4 - 6 * q^6 - 24 * q^7 + 23 * q^9 + 3 * q^10 + 24 * q^11 + 20 * q^12 + 91 * q^13 - 48 * q^14 + 6 * q^15 - q^16 - 117 * q^17 - 198 * q^19 - 15 * q^20 + 24 * q^22 + 78 * q^23 + 78 * q^24 + 244 * q^25 + 117 * q^26 - 200 * q^27 + 120 * q^28 + 141 * q^29 + 6 * q^30 - 315 * q^32 - 48 * q^33 + 24 * q^35 + 115 * q^36 - 249 * q^37 - 396 * q^38 - 130 * q^39 - 78 * q^40 + 471 * q^41 + 48 * q^42 - 104 * q^43 + 69 * q^45 + 234 * q^46 - 2 * q^48 - 151 * q^49 + 366 * q^50 + 468 * q^51 - 130 * q^52 + 186 * q^53 - 300 * q^54 + 24 * q^55 + 312 * q^56 + 423 * q^58 - 492 * q^59 - 145 * q^61 - 270 * q^62 - 552 * q^63 - 614 * q^64 + 39 * q^65 - 96 * q^66 - 1362 * q^67 - 585 * q^68 + 156 * q^69 + 1830 * q^71 + 897 * q^72 - 249 * q^74 - 244 * q^75 + 990 * q^76 - 384 * q^77 - 312 * q^78 + 2552 * q^79 + 3 * q^80 - 421 * q^81 + 471 * q^82 - 240 * q^84 - 351 * q^85 + 282 * q^87 + 312 * q^88 - 1692 * q^89 + 138 * q^90 - 1248 * q^91 - 780 * q^92 - 540 * q^93 - 522 * q^94 + 198 * q^95 + 348 * q^97 - 453 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/13\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.50000 + 0.866025i 0.530330 + 0.306186i 0.741151 0.671339i $$-0.234280\pi$$
−0.210821 + 0.977525i $$0.567614\pi$$
$$3$$ −1.00000 + 1.73205i −0.192450 + 0.333333i −0.946062 0.323987i $$-0.894977\pi$$
0.753612 + 0.657320i $$0.228310\pi$$
$$4$$ −2.50000 4.33013i −0.312500 0.541266i
$$5$$ 1.73205i 0.154919i −0.996995 0.0774597i $$-0.975319\pi$$
0.996995 0.0774597i $$-0.0246809\pi$$
$$6$$ −3.00000 + 1.73205i −0.204124 + 0.117851i
$$7$$ −12.0000 + 6.92820i −0.647939 + 0.374088i −0.787666 0.616102i $$-0.788711\pi$$
0.139727 + 0.990190i $$0.455377\pi$$
$$8$$ 22.5167i 0.995105i
$$9$$ 11.5000 + 19.9186i 0.425926 + 0.737725i
$$10$$ 1.50000 2.59808i 0.0474342 0.0821584i
$$11$$ 12.0000 + 6.92820i 0.328921 + 0.189903i 0.655362 0.755315i $$-0.272516\pi$$
−0.326441 + 0.945218i $$0.605849\pi$$
$$12$$ 10.0000 0.240563
$$13$$ 45.5000 + 11.2583i 0.970725 + 0.240192i
$$14$$ −24.0000 −0.458162
$$15$$ 3.00000 + 1.73205i 0.0516398 + 0.0298142i
$$16$$ −0.500000 + 0.866025i −0.00781250 + 0.0135316i
$$17$$ −58.5000 101.325i −0.834608 1.44558i −0.894349 0.447369i $$-0.852361\pi$$
0.0597414 0.998214i $$-0.480972\pi$$
$$18$$ 39.8372i 0.521651i
$$19$$ −99.0000 + 57.1577i −1.19538 + 0.690151i −0.959521 0.281637i $$-0.909123\pi$$
−0.235856 + 0.971788i $$0.575789\pi$$
$$20$$ −7.50000 + 4.33013i −0.0838525 + 0.0484123i
$$21$$ 27.7128i 0.287973i
$$22$$ 12.0000 + 20.7846i 0.116291 + 0.201422i
$$23$$ 39.0000 67.5500i 0.353568 0.612398i −0.633304 0.773903i $$-0.718302\pi$$
0.986872 + 0.161506i $$0.0516350\pi$$
$$24$$ 39.0000 + 22.5167i 0.331702 + 0.191508i
$$25$$ 122.000 0.976000
$$26$$ 58.5000 + 56.2917i 0.441261 + 0.424604i
$$27$$ −100.000 −0.712778
$$28$$ 60.0000 + 34.6410i 0.404962 + 0.233805i
$$29$$ 70.5000 122.110i 0.451432 0.781903i −0.547043 0.837104i $$-0.684247\pi$$
0.998475 + 0.0552014i $$0.0175801\pi$$
$$30$$ 3.00000 + 5.19615i 0.0182574 + 0.0316228i
$$31$$ 155.885i 0.903151i 0.892233 + 0.451576i $$0.149138\pi$$
−0.892233 + 0.451576i $$0.850862\pi$$
$$32$$ −157.500 + 90.9327i −0.870073 + 0.502337i
$$33$$ −24.0000 + 13.8564i −0.126602 + 0.0730937i
$$34$$ 202.650i 1.02218i
$$35$$ 12.0000 + 20.7846i 0.0579534 + 0.100378i
$$36$$ 57.5000 99.5929i 0.266204 0.461078i
$$37$$ −124.500 71.8801i −0.553180 0.319379i 0.197223 0.980359i $$-0.436808\pi$$
−0.750404 + 0.660980i $$0.770141\pi$$
$$38$$ −198.000 −0.845259
$$39$$ −65.0000 + 67.5500i −0.266880 + 0.277350i
$$40$$ −39.0000 −0.154161
$$41$$ 235.500 + 135.966i 0.897047 + 0.517910i 0.876241 0.481873i $$-0.160043\pi$$
0.0208059 + 0.999784i $$0.493377\pi$$
$$42$$ 24.0000 41.5692i 0.0881733 0.152721i
$$43$$ −52.0000 90.0666i −0.184417 0.319419i 0.758963 0.651134i $$-0.225706\pi$$
−0.943380 + 0.331714i $$0.892373\pi$$
$$44$$ 69.2820i 0.237379i
$$45$$ 34.5000 19.9186i 0.114288 0.0659842i
$$46$$ 117.000 67.5500i 0.375015 0.216515i
$$47$$ 301.377i 0.935326i 0.883907 + 0.467663i $$0.154904\pi$$
−0.883907 + 0.467663i $$0.845096\pi$$
$$48$$ −1.00000 1.73205i −0.00300703 0.00520833i
$$49$$ −75.5000 + 130.770i −0.220117 + 0.381253i
$$50$$ 183.000 + 105.655i 0.517602 + 0.298838i
$$51$$ 234.000 0.642481
$$52$$ −65.0000 225.167i −0.173344 0.600481i
$$53$$ 93.0000 0.241029 0.120514 0.992712i $$-0.461546\pi$$
0.120514 + 0.992712i $$0.461546\pi$$
$$54$$ −150.000 86.6025i −0.378008 0.218243i
$$55$$ 12.0000 20.7846i 0.0294196 0.0509563i
$$56$$ 156.000 + 270.200i 0.372257 + 0.644768i
$$57$$ 228.631i 0.531279i
$$58$$ 211.500 122.110i 0.478816 0.276444i
$$59$$ −246.000 + 142.028i −0.542822 + 0.313398i −0.746222 0.665698i $$-0.768134\pi$$
0.203400 + 0.979096i $$0.434801\pi$$
$$60$$ 17.3205i 0.0372678i
$$61$$ −72.5000 125.574i −0.152175 0.263575i 0.779852 0.625964i $$-0.215294\pi$$
−0.932027 + 0.362389i $$0.881961\pi$$
$$62$$ −135.000 + 233.827i −0.276533 + 0.478968i
$$63$$ −276.000 159.349i −0.551948 0.318667i
$$64$$ −307.000 −0.599609
$$65$$ 19.5000 78.8083i 0.0372104 0.150384i
$$66$$ −48.0000 −0.0895211
$$67$$ −681.000 393.176i −1.24175 0.716926i −0.272301 0.962212i $$-0.587785\pi$$
−0.969451 + 0.245286i $$0.921118\pi$$
$$68$$ −292.500 + 506.625i −0.521630 + 0.903490i
$$69$$ 78.0000 + 135.100i 0.136088 + 0.235712i
$$70$$ 41.5692i 0.0709782i
$$71$$ 915.000 528.275i 1.52944 0.883025i 0.530059 0.847961i $$-0.322170\pi$$
0.999385 0.0350641i $$-0.0111635\pi$$
$$72$$ 448.500 258.942i 0.734114 0.423841i
$$73$$ 458.993i 0.735906i 0.929844 + 0.367953i $$0.119941\pi$$
−0.929844 + 0.367953i $$0.880059\pi$$
$$74$$ −124.500 215.640i −0.195579 0.338752i
$$75$$ −122.000 + 211.310i −0.187831 + 0.325333i
$$76$$ 495.000 + 285.788i 0.747110 + 0.431344i
$$77$$ −192.000 −0.284161
$$78$$ −156.000 + 45.0333i −0.226455 + 0.0653720i
$$79$$ 1276.00 1.81723 0.908615 0.417634i $$-0.137141\pi$$
0.908615 + 0.417634i $$0.137141\pi$$
$$80$$ 1.50000 + 0.866025i 0.00209631 + 0.00121031i
$$81$$ −210.500 + 364.597i −0.288752 + 0.500133i
$$82$$ 235.500 + 407.898i 0.317154 + 0.549327i
$$83$$ 789.815i 1.04450i −0.852793 0.522250i $$-0.825093\pi$$
0.852793 0.522250i $$-0.174907\pi$$
$$84$$ −120.000 + 69.2820i −0.155870 + 0.0899915i
$$85$$ −175.500 + 101.325i −0.223949 + 0.129297i
$$86$$ 180.133i 0.225864i
$$87$$ 141.000 + 244.219i 0.173756 + 0.300955i
$$88$$ 156.000 270.200i 0.188973 0.327311i
$$89$$ −846.000 488.438i −1.00759 0.581734i −0.0971073 0.995274i $$-0.530959\pi$$
−0.910486 + 0.413540i $$0.864292\pi$$
$$90$$ 69.0000 0.0808138
$$91$$ −624.000 + 180.133i −0.718824 + 0.207507i
$$92$$ −390.000 −0.441960
$$93$$ −270.000 155.885i −0.301050 0.173812i
$$94$$ −261.000 + 452.065i −0.286384 + 0.496032i
$$95$$ 99.0000 + 171.473i 0.106918 + 0.185187i
$$96$$ 363.731i 0.386699i
$$97$$ 174.000 100.459i 0.182134 0.105155i −0.406161 0.913802i $$-0.633133\pi$$
0.588295 + 0.808646i $$0.299799\pi$$
$$98$$ −226.500 + 130.770i −0.233469 + 0.134793i
$$99$$ 318.697i 0.323538i
$$100$$ −305.000 528.275i −0.305000 0.528275i
$$101$$ −214.500 + 371.525i −0.211322 + 0.366021i −0.952129 0.305698i $$-0.901110\pi$$
0.740806 + 0.671719i $$0.234444\pi$$
$$102$$ 351.000 + 202.650i 0.340727 + 0.196719i
$$103$$ 182.000 0.174107 0.0870534 0.996204i $$-0.472255\pi$$
0.0870534 + 0.996204i $$0.472255\pi$$
$$104$$ 253.500 1024.51i 0.239017 0.965974i
$$105$$ −48.0000 −0.0446126
$$106$$ 139.500 + 80.5404i 0.127825 + 0.0737997i
$$107$$ 753.000 1304.23i 0.680330 1.17837i −0.294551 0.955636i $$-0.595170\pi$$
0.974880 0.222729i $$-0.0714967\pi$$
$$108$$ 250.000 + 433.013i 0.222743 + 0.385802i
$$109$$ 1551.92i 1.36373i 0.731477 + 0.681866i $$0.238831\pi$$
−0.731477 + 0.681866i $$0.761169\pi$$
$$110$$ 36.0000 20.7846i 0.0312042 0.0180158i
$$111$$ 249.000 143.760i 0.212919 0.122929i
$$112$$ 13.8564i 0.0116902i
$$113$$ 343.500 + 594.959i 0.285962 + 0.495302i 0.972842 0.231470i $$-0.0743534\pi$$
−0.686880 + 0.726771i $$0.741020\pi$$
$$114$$ 198.000 342.946i 0.162670 0.281753i
$$115$$ −117.000 67.5500i −0.0948722 0.0547745i
$$116$$ −705.000 −0.564290
$$117$$ 299.000 + 1035.77i 0.236261 + 0.818433i
$$118$$ −492.000 −0.383833
$$119$$ 1404.00 + 810.600i 1.08155 + 0.624433i
$$120$$ 39.0000 67.5500i 0.0296683 0.0513870i
$$121$$ −569.500 986.403i −0.427874 0.741099i
$$122$$ 251.147i 0.186376i
$$123$$ −471.000 + 271.932i −0.345273 + 0.199344i
$$124$$ 675.000 389.711i 0.488845 0.282235i
$$125$$ 427.817i 0.306121i
$$126$$ −276.000 478.046i −0.195143 0.337998i
$$127$$ −143.000 + 247.683i −0.0999149 + 0.173058i −0.911649 0.410969i $$-0.865190\pi$$
0.811734 + 0.584027i $$0.198524\pi$$
$$128$$ 799.500 + 461.592i 0.552082 + 0.318745i
$$129$$ 208.000 0.141964
$$130$$ 97.5000 101.325i 0.0657794 0.0683599i
$$131$$ −1974.00 −1.31656 −0.658279 0.752774i $$-0.728715\pi$$
−0.658279 + 0.752774i $$0.728715\pi$$
$$132$$ 120.000 + 69.2820i 0.0791262 + 0.0456835i
$$133$$ 792.000 1371.78i 0.516354 0.894352i
$$134$$ −681.000 1179.53i −0.439026 0.760415i
$$135$$ 173.205i 0.110423i
$$136$$ −2281.50 + 1317.22i −1.43851 + 0.830523i
$$137$$ −733.500 + 423.486i −0.457424 + 0.264094i −0.710961 0.703232i $$-0.751740\pi$$
0.253536 + 0.967326i $$0.418406\pi$$
$$138$$ 270.200i 0.166674i
$$139$$ −118.000 204.382i −0.0720045 0.124716i 0.827775 0.561060i $$-0.189606\pi$$
−0.899780 + 0.436344i $$0.856273\pi$$
$$140$$ 60.0000 103.923i 0.0362209 0.0627364i
$$141$$ −522.000 301.377i −0.311775 0.180004i
$$142$$ 1830.00 1.08148
$$143$$ 468.000 + 450.333i 0.273679 + 0.263348i
$$144$$ −23.0000 −0.0133102
$$145$$ −211.500 122.110i −0.121132 0.0699355i
$$146$$ −397.500 + 688.490i −0.225324 + 0.390273i
$$147$$ −151.000 261.540i −0.0847229 0.146744i
$$148$$ 718.801i 0.399224i
$$149$$ −40.5000 + 23.3827i −0.0222677 + 0.0128563i −0.511093 0.859526i $$-0.670759\pi$$
0.488825 + 0.872382i $$0.337426\pi$$
$$150$$ −366.000 + 211.310i −0.199225 + 0.115023i
$$151$$ 1770.16i 0.953995i −0.878905 0.476998i $$-0.841725\pi$$
0.878905 0.476998i $$-0.158275\pi$$
$$152$$ 1287.00 + 2229.15i 0.686773 + 1.18953i
$$153$$ 1345.50 2330.47i 0.710962 1.23142i
$$154$$ −288.000 166.277i −0.150699 0.0870063i
$$155$$ 270.000 0.139916
$$156$$ 455.000 + 112.583i 0.233520 + 0.0577813i
$$157$$ 1211.00 0.615594 0.307797 0.951452i $$-0.400408\pi$$
0.307797 + 0.951452i $$0.400408\pi$$
$$158$$ 1914.00 + 1105.05i 0.963732 + 0.556411i
$$159$$ −93.0000 + 161.081i −0.0463860 + 0.0803430i
$$160$$ 157.500 + 272.798i 0.0778217 + 0.134791i
$$161$$ 1080.80i 0.529062i
$$162$$ −631.500 + 364.597i −0.306267 + 0.176824i
$$163$$ −870.000 + 502.295i −0.418059 + 0.241367i −0.694247 0.719737i $$-0.744262\pi$$
0.276187 + 0.961104i $$0.410929\pi$$
$$164$$ 1359.66i 0.647388i
$$165$$ 24.0000 + 41.5692i 0.0113236 + 0.0196131i
$$166$$ 684.000 1184.72i 0.319811 0.553930i
$$167$$ 792.000 + 457.261i 0.366987 + 0.211880i 0.672141 0.740423i $$-0.265375\pi$$
−0.305154 + 0.952303i $$0.598708\pi$$
$$168$$ −624.000 −0.286563
$$169$$ 1943.50 + 1024.51i 0.884615 + 0.466321i
$$170$$ −351.000 −0.158356
$$171$$ −2277.00 1314.63i −1.01828 0.587906i
$$172$$ −260.000 + 450.333i −0.115261 + 0.199637i
$$173$$ −1287.00 2229.15i −0.565600 0.979648i −0.996994 0.0774841i $$-0.975311\pi$$
0.431394 0.902164i $$-0.358022\pi$$
$$174$$ 488.438i 0.212807i
$$175$$ −1464.00 + 845.241i −0.632389 + 0.365110i
$$176$$ −12.0000 + 6.92820i −0.00513940 + 0.00296723i
$$177$$ 568.113i 0.241254i
$$178$$ −846.000 1465.31i −0.356238 0.617022i
$$179$$ −1872.00 + 3242.40i −0.781675 + 1.35390i 0.149290 + 0.988793i $$0.452301\pi$$
−0.930965 + 0.365108i $$0.881032\pi$$
$$180$$ −172.500 99.5929i −0.0714299 0.0412401i
$$181$$ −637.000 −0.261590 −0.130795 0.991409i $$-0.541753\pi$$
−0.130795 + 0.991409i $$0.541753\pi$$
$$182$$ −1092.00 270.200i −0.444750 0.110047i
$$183$$ 290.000 0.117144
$$184$$ −1521.00 878.150i −0.609400 0.351837i
$$185$$ −124.500 + 215.640i −0.0494780 + 0.0856983i
$$186$$ −270.000 467.654i −0.106437 0.184355i
$$187$$ 1621.20i 0.633978i
$$188$$ 1305.00 753.442i 0.506260 0.292289i
$$189$$ 1200.00 692.820i 0.461837 0.266642i
$$190$$ 342.946i 0.130947i
$$191$$ 1299.00 + 2249.93i 0.492106 + 0.852353i 0.999959 0.00909077i $$-0.00289372\pi$$
−0.507852 + 0.861444i $$0.669560\pi$$
$$192$$ 307.000 531.740i 0.115395 0.199870i
$$193$$ 967.500 + 558.586i 0.360840 + 0.208331i 0.669449 0.742858i $$-0.266530\pi$$
−0.308609 + 0.951189i $$0.599863\pi$$
$$194$$ 348.000 0.128788
$$195$$ 117.000 + 112.583i 0.0429669 + 0.0413449i
$$196$$ 755.000 0.275146
$$197$$ 1776.00 + 1025.37i 0.642308 + 0.370837i 0.785503 0.618858i $$-0.212404\pi$$
−0.143195 + 0.989695i $$0.545738\pi$$
$$198$$ −276.000 + 478.046i −0.0990630 + 0.171582i
$$199$$ 1261.00 + 2184.12i 0.449196 + 0.778030i 0.998334 0.0577019i $$-0.0183773\pi$$
−0.549138 + 0.835732i $$0.685044\pi$$
$$200$$ 2747.03i 0.971223i
$$201$$ 1362.00 786.351i 0.477951 0.275945i
$$202$$ −643.500 + 371.525i −0.224141 + 0.129408i
$$203$$ 1953.75i 0.675500i
$$204$$ −585.000 1013.25i −0.200775 0.347753i
$$205$$ 235.500 407.898i 0.0802343 0.138970i
$$206$$ 273.000 + 157.617i 0.0923340 + 0.0533091i
$$207$$ 1794.00 0.602375
$$208$$ −32.5000 + 33.7750i −0.0108340 + 0.0112590i
$$209$$ −1584.00 −0.524247
$$210$$ −72.0000 41.5692i −0.0236594 0.0136598i
$$211$$ −521.000 + 902.398i −0.169986 + 0.294425i −0.938415 0.345511i $$-0.887706\pi$$
0.768428 + 0.639936i $$0.221039\pi$$
$$212$$ −232.500 402.702i −0.0753215 0.130461i
$$213$$ 2113.10i 0.679753i
$$214$$ 2259.00 1304.23i 0.721598 0.416615i
$$215$$ −156.000 + 90.0666i −0.0494842 + 0.0285697i
$$216$$ 2251.67i 0.709289i
$$217$$ −1080.00 1870.61i −0.337858 0.585187i
$$218$$ −1344.00 + 2327.88i −0.417556 + 0.723228i
$$219$$ −795.000 458.993i −0.245302 0.141625i
$$220$$ −120.000 −0.0367745
$$221$$ −1521.00 5268.90i −0.462957 1.60373i
$$222$$ 498.000 0.150557
$$223$$ −2085.00 1203.78i −0.626107 0.361483i 0.153136 0.988205i $$-0.451063\pi$$
−0.779243 + 0.626722i $$0.784396\pi$$
$$224$$ 1260.00 2182.38i 0.375836 0.650967i
$$225$$ 1403.00 + 2430.07i 0.415704 + 0.720020i
$$226$$ 1189.92i 0.350231i
$$227$$ 2085.00 1203.78i 0.609631 0.351971i −0.163190 0.986595i $$-0.552178\pi$$
0.772821 + 0.634624i $$0.218845\pi$$
$$228$$ −990.000 + 571.577i −0.287563 + 0.166025i
$$229$$ 2508.01i 0.723729i 0.932231 + 0.361864i $$0.117860\pi$$
−0.932231 + 0.361864i $$0.882140\pi$$
$$230$$ −117.000 202.650i −0.0335424 0.0580971i
$$231$$ 192.000 332.554i 0.0546869 0.0947205i
$$232$$ −2749.50 1587.42i −0.778076 0.449222i
$$233$$ −5850.00 −1.64483 −0.822417 0.568885i $$-0.807375\pi$$
−0.822417 + 0.568885i $$0.807375\pi$$
$$234$$ −448.500 + 1812.59i −0.125296 + 0.506379i
$$235$$ 522.000 0.144900
$$236$$ 1230.00 + 710.141i 0.339263 + 0.195874i
$$237$$ −1276.00 + 2210.10i −0.349726 + 0.605744i
$$238$$ 1404.00 + 2431.80i 0.382386 + 0.662312i
$$239$$ 5383.21i 1.45695i −0.685072 0.728475i $$-0.740229\pi$$
0.685072 0.728475i $$-0.259771\pi$$
$$240$$ −3.00000 + 1.73205i −0.000806872 + 0.000465847i
$$241$$ 4258.50 2458.65i 1.13823 0.657159i 0.192240 0.981348i $$-0.438425\pi$$
0.945992 + 0.324189i $$0.105091\pi$$
$$242$$ 1972.81i 0.524036i
$$243$$ −1771.00 3067.46i −0.467530 0.809785i
$$244$$ −362.500 + 627.868i −0.0951094 + 0.164734i
$$245$$ 226.500 + 130.770i 0.0590635 + 0.0341003i
$$246$$ −942.000 −0.244145
$$247$$ −5148.00 + 1486.10i −1.32615 + 0.382827i
$$248$$ 3510.00 0.898731
$$249$$ 1368.00 + 789.815i 0.348167 + 0.201014i
$$250$$ 370.500 641.725i 0.0937299 0.162345i
$$251$$ 1989.00 + 3445.05i 0.500178 + 0.866333i 1.00000 0.000205037i $$6.52654e-5\pi$$
−0.499822 + 0.866128i $$0.666601\pi$$
$$252$$ 1593.49i 0.398334i
$$253$$ 936.000 540.400i 0.232592 0.134287i
$$254$$ −429.000 + 247.683i −0.105976 + 0.0611852i
$$255$$ 405.300i 0.0995328i
$$256$$ 2027.50 + 3511.73i 0.494995 + 0.857357i
$$257$$ −1033.50 + 1790.07i −0.250848 + 0.434482i −0.963760 0.266772i $$-0.914043\pi$$
0.712911 + 0.701254i $$0.247376\pi$$
$$258$$ 312.000 + 180.133i 0.0752879 + 0.0434675i
$$259$$ 1992.00 0.477903
$$260$$ −390.000 + 112.583i −0.0930261 + 0.0268543i
$$261$$ 3243.00 0.769106
$$262$$ −2961.00 1709.53i −0.698211 0.403112i
$$263$$ 1026.00 1777.08i 0.240555 0.416653i −0.720318 0.693644i $$-0.756004\pi$$
0.960872 + 0.276991i $$0.0893373\pi$$
$$264$$ 312.000 + 540.400i 0.0727359 + 0.125982i
$$265$$ 161.081i 0.0373400i
$$266$$ 2376.00 1371.78i 0.547676 0.316201i
$$267$$ 1692.00 976.877i 0.387823 0.223910i
$$268$$ 3931.76i 0.896157i
$$269$$ −1665.00 2883.86i −0.377386 0.653652i 0.613295 0.789854i $$-0.289844\pi$$
−0.990681 + 0.136202i $$0.956510\pi$$
$$270$$ −150.000 + 259.808i −0.0338100 + 0.0585607i
$$271$$ 2430.00 + 1402.96i 0.544694 + 0.314479i 0.746979 0.664848i $$-0.231504\pi$$
−0.202285 + 0.979327i $$0.564837\pi$$
$$272$$ 117.000 0.0260815
$$273$$ 312.000 1260.93i 0.0691689 0.279543i
$$274$$ −1467.00 −0.323448
$$275$$ 1464.00 + 845.241i 0.321027 + 0.185345i
$$276$$ 390.000 675.500i 0.0850552 0.147320i
$$277$$ −188.500 326.492i −0.0408876 0.0708194i 0.844857 0.534992i $$-0.179685\pi$$
−0.885745 + 0.464172i $$0.846352\pi$$
$$278$$ 408.764i 0.0881872i
$$279$$ −3105.00 + 1792.67i −0.666278 + 0.384676i
$$280$$ 468.000 270.200i 0.0998870 0.0576698i
$$281$$ 36.3731i 0.00772183i −0.999993 0.00386092i $$-0.998771\pi$$
0.999993 0.00386092i $$-0.00122897\pi$$
$$282$$ −522.000 904.131i −0.110229 0.190923i
$$283$$ 3562.00 6169.56i 0.748194 1.29591i −0.200493 0.979695i $$-0.564255\pi$$
0.948688 0.316215i $$-0.102412\pi$$
$$284$$ −4575.00 2641.38i −0.955902 0.551891i
$$285$$ −396.000 −0.0823053
$$286$$ 312.000 + 1080.80i 0.0645068 + 0.223458i
$$287$$ −3768.00 −0.774976
$$288$$ −3622.50 2091.45i −0.741173 0.427917i
$$289$$ −4388.00 + 7600.24i −0.893141 + 1.54696i
$$290$$ −211.500 366.329i −0.0428266 0.0741778i
$$291$$ 401.836i 0.0809486i
$$292$$ 1987.50 1147.48i 0.398321 0.229971i
$$293$$ −7207.50 + 4161.25i −1.43709 + 0.829703i −0.997646 0.0685685i $$-0.978157\pi$$
−0.439441 + 0.898271i $$0.644823\pi$$
$$294$$ 523.079i 0.103764i
$$295$$ 246.000 + 426.084i 0.0485514 + 0.0840936i
$$296$$ −1618.50 + 2803.32i −0.317816 + 0.550473i
$$297$$ −1200.00 692.820i −0.234448 0.135359i
$$298$$ −81.0000 −0.0157457
$$299$$ 2535.00 2634.45i 0.490310 0.509546i
$$300$$ 1220.00 0.234789
$$301$$ 1248.00 + 720.533i 0.238982 + 0.137976i
$$302$$ 1533.00 2655.23i 0.292100 0.505932i
$$303$$ −429.000 743.050i −0.0813380 0.140882i
$$304$$ 114.315i 0.0215672i
$$305$$ −217.500 + 125.574i −0.0408328 + 0.0235748i
$$306$$ 4036.50 2330.47i 0.754089 0.435374i
$$307$$ 2220.49i 0.412801i −0.978468 0.206401i $$-0.933825\pi$$
0.978468 0.206401i $$-0.0661750\pi$$
$$308$$ 480.000 + 831.384i 0.0888004 + 0.153807i
$$309$$ −182.000 + 315.233i −0.0335069 + 0.0580356i
$$310$$ 405.000 + 233.827i 0.0742015 + 0.0428402i
$$311$$ 4914.00 0.895972 0.447986 0.894041i $$-0.352141\pi$$
0.447986 + 0.894041i $$0.352141\pi$$
$$312$$ 1521.00 + 1463.58i 0.275993 + 0.265574i
$$313$$ −518.000 −0.0935434 −0.0467717 0.998906i $$-0.514893\pi$$
−0.0467717 + 0.998906i $$0.514893\pi$$
$$314$$ 1816.50 + 1048.76i 0.326468 + 0.188487i
$$315$$ −276.000 + 478.046i −0.0493677 + 0.0855074i
$$316$$ −3190.00 5525.24i −0.567885 0.983605i
$$317$$ 3916.17i 0.693861i 0.937891 + 0.346930i $$0.112776\pi$$
−0.937891 + 0.346930i $$0.887224\pi$$
$$318$$ −279.000 + 161.081i −0.0491998 + 0.0284055i
$$319$$ 1692.00 976.877i 0.296971 0.171456i
$$320$$ 531.740i 0.0928911i
$$321$$ 1506.00 + 2608.47i 0.261859 + 0.453553i
$$322$$ −936.000 + 1621.20i −0.161991 + 0.280577i
$$323$$ 11583.0 + 6687.45i 1.99534 + 1.15201i
$$324$$ 2105.00 0.360940
$$325$$ 5551.00 + 1373.52i 0.947428 + 0.234428i
$$326$$ −1740.00 −0.295613
$$327$$ −2688.00 1551.92i −0.454577 0.262450i
$$328$$ 3061.50 5302.67i 0.515375 0.892656i
$$329$$ −2088.00 3616.52i −0.349894 0.606034i
$$330$$ 83.1384i 0.0138685i
$$331$$ −6456.00 + 3727.37i −1.07207 + 0.618958i −0.928745 0.370719i $$-0.879111\pi$$
−0.143321 + 0.989676i $$0.545778\pi$$
$$332$$ −3420.00 + 1974.54i −0.565352 + 0.326406i
$$333$$ 3306.48i 0.544127i
$$334$$ 792.000 + 1371.78i 0.129749 + 0.224733i
$$335$$ −681.000 + 1179.53i −0.111066 + 0.192371i
$$336$$ 24.0000 + 13.8564i 0.00389675 + 0.00224979i
$$337$$ −3575.00 −0.577871 −0.288936 0.957349i $$-0.593301\pi$$
−0.288936 + 0.957349i $$0.593301\pi$$
$$338$$ 2028.00 + 3219.88i 0.326357 + 0.518161i
$$339$$ −1374.00 −0.220134
$$340$$ 877.500 + 506.625i 0.139968 + 0.0808106i
$$341$$ −1080.00 + 1870.61i −0.171511 + 0.297066i
$$342$$ −2277.00 3943.88i −0.360018 0.623569i
$$343$$ 6845.06i 1.07755i
$$344$$ −2028.00 + 1170.87i −0.317856 + 0.183514i
$$345$$ 234.000 135.100i 0.0365163 0.0210827i
$$346$$ 4458.30i 0.692716i
$$347$$ 3483.00 + 6032.73i 0.538839 + 0.933297i 0.998967 + 0.0454442i $$0.0144703\pi$$
−0.460128 + 0.887853i $$0.652196\pi$$
$$348$$ 705.000 1221.10i 0.108598 0.188097i
$$349$$ −5760.00 3325.54i −0.883455 0.510063i −0.0116588 0.999932i $$-0.503711\pi$$
−0.871796 + 0.489869i $$0.837045\pi$$
$$350$$ −2928.00 −0.447166
$$351$$ −4550.00 1125.83i −0.691912 0.171204i
$$352$$ −2520.00 −0.381581
$$353$$ 4876.50 + 2815.45i 0.735269 + 0.424508i 0.820347 0.571867i $$-0.193781\pi$$
−0.0850777 + 0.996374i $$0.527114\pi$$
$$354$$ 492.000 852.169i 0.0738687 0.127944i
$$355$$ −915.000 1584.83i −0.136798 0.236940i
$$356$$ 4884.38i 0.727168i
$$357$$ −2808.00 + 1621.20i −0.416289 + 0.240344i
$$358$$ −5616.00 + 3242.40i −0.829092 + 0.478676i
$$359$$ 7129.12i 1.04808i −0.851694 0.524040i $$-0.824424\pi$$
0.851694 0.524040i $$-0.175576\pi$$
$$360$$ −448.500 776.825i −0.0656612 0.113729i
$$361$$ 3104.50 5377.15i 0.452617 0.783956i
$$362$$ −955.500 551.658i −0.138729 0.0800953i
$$363$$ 2278.00 0.329377
$$364$$ 2340.00 + 2251.67i 0.336949 + 0.324229i
$$365$$ 795.000 0.114006
$$366$$ 435.000 + 251.147i 0.0621252 + 0.0358680i
$$367$$ −1.00000 + 1.73205i −0.000142233 + 0.000246355i −0.866097 0.499877i $$-0.833379\pi$$
0.865954 + 0.500123i $$0.166712\pi$$
$$368$$ 39.0000 + 67.5500i 0.00552450 + 0.00956871i
$$369$$ 6254.44i 0.882366i
$$370$$ −373.500 + 215.640i −0.0524793 + 0.0302989i
$$371$$ −1116.00 + 644.323i −0.156172 + 0.0901660i
$$372$$ 1558.85i 0.217264i
$$373$$ −1749.50 3030.22i −0.242857 0.420641i 0.718670 0.695351i $$-0.244751\pi$$
−0.961527 + 0.274711i $$0.911418\pi$$
$$374$$ 1404.00 2431.80i 0.194115 0.336218i
$$375$$ 741.000 + 427.817i 0.102040 + 0.0589129i
$$376$$ 6786.00 0.930748
$$377$$ 4582.50 4762.27i 0.626023 0.650582i
$$378$$ 2400.00 0.326568
$$379$$ 4779.00 + 2759.16i 0.647706 + 0.373953i 0.787577 0.616216i $$-0.211335\pi$$
−0.139871 + 0.990170i $$0.544669\pi$$
$$380$$ 495.000 857.365i 0.0668236 0.115742i
$$381$$ −286.000 495.367i −0.0384573 0.0666100i
$$382$$ 4499.87i 0.602705i
$$383$$ −6378.00 + 3682.34i −0.850915 + 0.491276i −0.860960 0.508673i $$-0.830136\pi$$
0.0100443 + 0.999950i $$0.496803\pi$$
$$384$$ −1599.00 + 923.183i −0.212496 + 0.122685i
$$385$$ 332.554i 0.0440221i
$$386$$ 967.500 + 1675.76i 0.127576 + 0.220969i
$$387$$ 1196.00 2071.53i 0.157096 0.272098i
$$388$$ −870.000 502.295i −0.113834 0.0657220i
$$389$$ −1209.00 −0.157580 −0.0787901 0.996891i $$-0.525106\pi$$
−0.0787901 + 0.996891i $$0.525106\pi$$
$$390$$ 78.0000 + 270.200i 0.0101274 + 0.0350823i
$$391$$ −9126.00 −1.18036
$$392$$ 2944.50 + 1700.01i 0.379387 + 0.219039i
$$393$$ 1974.00 3419.07i 0.253372 0.438853i
$$394$$ 1776.00 + 3076.12i 0.227090 + 0.393332i
$$395$$ 2210.10i 0.281524i
$$396$$ 1380.00 796.743i 0.175120 0.101106i
$$397$$ 10128.0 5847.40i 1.28038 0.739226i 0.303460 0.952844i $$-0.401858\pi$$
0.976917 + 0.213618i $$0.0685248\pi$$
$$398$$ 4368.23i 0.550150i
$$399$$ 1584.00 + 2743.57i 0.198745 + 0.344236i
$$400$$ −61.0000 + 105.655i −0.00762500 + 0.0132069i
$$401$$ −2581.50 1490.43i −0.321481 0.185607i 0.330571 0.943781i $$-0.392759\pi$$
−0.652053 + 0.758174i $$0.726092\pi$$
$$402$$ 2724.00 0.337962
$$403$$ −1755.00 + 7092.75i −0.216930 + 0.876712i
$$404$$ 2145.00 0.264153
$$405$$ 631.500 + 364.597i 0.0774802 + 0.0447332i
$$406$$ −1692.00 + 2930.63i −0.206829 + 0.358238i
$$407$$ −996.000 1725.12i −0.121302 0.210101i
$$408$$ 5268.90i 0.639337i
$$409$$ 37.5000 21.6506i 0.00453363 0.00261749i −0.497731 0.867331i $$-0.665833\pi$$
0.502265 + 0.864714i $$0.332500\pi$$
$$410$$ 706.500 407.898i 0.0851013 0.0491333i
$$411$$ 1693.95i 0.203300i
$$412$$ −455.000 788.083i −0.0544084 0.0942380i
$$413$$ 1968.00 3408.68i 0.234477 0.406126i
$$414$$ 2691.00 + 1553.65i 0.319458 + 0.184439i
$$415$$ −1368.00 −0.161813
$$416$$ −8190.00 + 2364.25i −0.965259 + 0.278646i
$$417$$ 472.000 0.0554291
$$418$$ −2376.00 1371.78i −0.278024 0.160517i
$$419$$ 4731.00 8194.33i 0.551610 0.955416i −0.446549 0.894759i $$-0.647347\pi$$
0.998159 0.0606569i $$-0.0193195\pi$$
$$420$$ 120.000 + 207.846i 0.0139414 + 0.0241473i
$$421$$ 7068.50i 0.818284i 0.912471 + 0.409142i $$0.134172\pi$$
−0.912471 + 0.409142i $$0.865828\pi$$
$$422$$ −1563.00 + 902.398i −0.180298 + 0.104095i
$$423$$ −6003.00 + 3465.83i −0.690014 + 0.398380i
$$424$$ 2094.05i 0.239849i
$$425$$ −7137.00 12361.6i −0.814577 1.41089i
$$426$$ −1830.00 + 3169.65i −0.208131 + 0.360493i
$$427$$ 1740.00 + 1004.59i 0.197200 + 0.113854i
$$428$$ −7530.00 −0.850412
$$429$$ −1248.00 + 360.267i −0.140452 + 0.0405451i
$$430$$ −312.000 −0.0349906
$$431$$ −8598.00 4964.06i −0.960907 0.554780i −0.0644552 0.997921i $$-0.520531\pi$$
−0.896452 + 0.443140i $$0.853864\pi$$
$$432$$ 50.0000 86.6025i 0.00556858 0.00964506i
$$433$$ 3308.50 + 5730.49i 0.367197 + 0.636004i 0.989126 0.147070i $$-0.0469841\pi$$
−0.621929 + 0.783074i $$0.713651\pi$$
$$434$$ 3741.23i 0.413790i
$$435$$ 423.000 244.219i 0.0466237 0.0269182i
$$436$$ 6720.00 3879.79i 0.738141 0.426166i
$$437$$ 8916.60i 0.976061i
$$438$$ −795.000 1376.98i −0.0867273 0.150216i
$$439$$ −6994.00 + 12114.0i −0.760377 + 1.31701i 0.182280 + 0.983247i $$0.441652\pi$$
−0.942656 + 0.333765i $$0.891681\pi$$
$$440$$ −468.000 270.200i −0.0507069 0.0292756i
$$441$$ −3473.00 −0.375013
$$442$$ 2281.50 9220.57i 0.245520 0.992258i
$$443$$ 2004.00 0.214928 0.107464 0.994209i $$-0.465727\pi$$
0.107464 + 0.994209i $$0.465727\pi$$
$$444$$ −1245.00 718.801i −0.133075 0.0768306i
$$445$$ −846.000 + 1465.31i −0.0901219 + 0.156096i
$$446$$ −2085.00 3611.33i −0.221362 0.383411i
$$447$$ 93.5307i 0.00989676i
$$448$$ 3684.00 2126.96i 0.388510 0.224307i
$$449$$ 7866.00 4541.44i 0.826769 0.477336i −0.0259758 0.999663i $$-0.508269\pi$$
0.852745 + 0.522327i $$0.174936\pi$$
$$450$$ 4860.13i 0.509131i
$$451$$ 1884.00 + 3263.18i 0.196705 + 0.340704i
$$452$$ 1717.50 2974.80i 0.178727 0.309563i
$$453$$ 3066.00 + 1770.16i 0.317998 + 0.183596i
$$454$$ 4170.00 0.431074
$$455$$ 312.000 + 1080.80i 0.0321468 + 0.111360i
$$456$$ −5148.00 −0.528678
$$457$$ 2185.50 + 1261.80i 0.223705 + 0.129156i 0.607665 0.794194i $$-0.292106\pi$$
−0.383959 + 0.923350i $$0.625440\pi$$
$$458$$ −2172.00 + 3762.01i −0.221596 + 0.383815i
$$459$$ 5850.00 + 10132.5i 0.594890 + 1.03038i
$$460$$ 675.500i 0.0684681i
$$461$$ 16963.5 9793.88i 1.71382 0.989472i 0.784545 0.620072i $$-0.212897\pi$$
0.929270 0.369400i $$-0.120437\pi$$
$$462$$ 576.000 332.554i 0.0580042 0.0334887i
$$463$$ 8632.54i 0.866497i 0.901274 + 0.433249i $$0.142633\pi$$
−0.901274 + 0.433249i $$0.857367\pi$$
$$464$$ 70.5000 + 122.110i 0.00705362 + 0.0122172i
$$465$$ −270.000 + 467.654i −0.0269268 + 0.0466385i
$$466$$ −8775.00 5066.25i −0.872305 0.503625i
$$467$$ 5460.00 0.541025 0.270512 0.962716i $$-0.412807\pi$$
0.270512 + 0.962716i $$0.412807\pi$$
$$468$$ 3737.50 3884.12i 0.369158 0.383640i
$$469$$ 10896.0 1.07277
$$470$$ 783.000 + 452.065i 0.0768449 + 0.0443664i
$$471$$ −1211.00 + 2097.51i −0.118471 + 0.205198i
$$472$$ 3198.00 + 5539.10i 0.311864 + 0.540165i
$$473$$ 1441.07i 0.140085i
$$474$$ −3828.00 + 2210.10i −0.370941 + 0.214163i
$$475$$ −12078.0 + 6973.24i −1.16669 + 0.673587i
$$476$$ 8106.00i 0.780542i
$$477$$ 1069.50 + 1852.43i 0.102660 + 0.177813i
$$478$$ 4662.00 8074.82i 0.446098 0.772665i
$$479$$ −2211.00 1276.52i −0.210904 0.121766i 0.390827 0.920464i $$-0.372189\pi$$
−0.601732 + 0.798698i $$0.705522\pi$$
$$480$$ −630.000 −0.0599072
$$481$$ −4855.50 4672.21i −0.460274 0.442899i
$$482$$ 8517.00 0.804852
$$483$$ −1872.00 1080.80i −0.176354 0.101818i
$$484$$ −2847.50 + 4932.01i −0.267421 + 0.463187i
$$485$$ −174.000 301.377i −0.0162906 0.0282161i
$$486$$ 6134.92i 0.572605i
$$487$$ 9378.00 5414.39i 0.872603 0.503798i 0.00439074 0.999990i $$-0.498602\pi$$
0.868212 + 0.496193i $$0.165269\pi$$
$$488$$ −2827.50 + 1632.46i −0.262285 + 0.151430i
$$489$$ 2009.18i 0.185804i
$$490$$ 226.500 + 392.310i 0.0208821 + 0.0361689i
$$491$$ −5694.00 + 9862.30i −0.523354 + 0.906475i 0.476277 + 0.879295i $$0.341986\pi$$
−0.999631 + 0.0271797i $$0.991347\pi$$
$$492$$ 2355.00 + 1359.66i 0.215796 + 0.124590i
$$493$$ −16497.0 −1.50707
$$494$$ −9009.00 2229.15i −0.820514 0.203025i
$$495$$ 552.000 0.0501223
$$496$$ −135.000 77.9423i −0.0122211 0.00705587i
$$497$$ −7320.00 + 12678.6i −0.660658 + 1.14429i
$$498$$ 1368.00 + 2369.45i 0.123095 + 0.213208i
$$499$$ 17677.3i 1.58586i −0.609311 0.792931i $$-0.708554\pi$$
0.609311 0.792931i $$-0.291446\pi$$
$$500$$ −1852.50 + 1069.54i −0.165693 + 0.0956627i
$$501$$ −1584.00 + 914.523i −0.141253 + 0.0815526i
$$502$$ 6890.10i 0.612590i
$$503$$ −1938.00 3356.71i −0.171792 0.297552i 0.767255 0.641343i $$-0.221622\pi$$
−0.939046 + 0.343791i $$0.888289\pi$$
$$504$$ −3588.00 + 6214.60i −0.317108 + 0.549246i
$$505$$ 643.500 + 371.525i 0.0567037 + 0.0327379i
$$506$$ 1872.00 0.164467
$$507$$ −3718.00 + 2341.73i −0.325685 + 0.205128i
$$508$$ 1430.00 0.124894
$$509$$ −14779.5 8532.95i −1.28701 0.743058i −0.308893 0.951097i $$-0.599958\pi$$
−0.978120 + 0.208039i $$0.933292\pi$$
$$510$$ 351.000 607.950i 0.0304756 0.0527852i
$$511$$ −3180.00 5507.92i −0.275293 0.476822i
$$512$$ 361.999i 0.0312465i
$$513$$ 9900.00 5715.77i 0.852038 0.491925i
$$514$$ −3100.50 + 1790.07i −0.266065 + 0.153612i
$$515$$ 315.233i 0.0269725i
$$516$$ −520.000 900.666i −0.0443638 0.0768404i
$$517$$ −2088.00 + 3616.52i −0.177621 + 0.307649i
$$518$$ 2988.00 + 1725.12i 0.253446 + 0.146327i
$$519$$ 5148.00 0.435399
$$520$$ −1774.50 439.075i −0.149648 0.0370283i
$$521$$ 2121.00 0.178355 0.0891773 0.996016i $$-0.471576\pi$$
0.0891773 + 0.996016i $$0.471576\pi$$
$$522$$ 4864.50 + 2808.52i 0.407880 + 0.235490i
$$523$$ 5732.00 9928.12i 0.479241 0.830069i −0.520476 0.853876i $$-0.674245\pi$$
0.999717 + 0.0238072i $$0.00757878\pi$$
$$524$$ 4935.00 + 8547.67i 0.411425 + 0.712608i
$$525$$ 3380.96i 0.281062i
$$526$$ 3078.00 1777.08i 0.255147 0.147309i
$$527$$ 15795.0 9119.25i 1.30558 0.753777i
$$528$$ 27.7128i 0.00228418i
$$529$$ 3041.50 + 5268.03i 0.249979 + 0.432977i
$$530$$ 139.500 241.621i 0.0114330 0.0198025i
$$531$$ −5658.00 3266.65i −0.462404 0.266969i
$$532$$ −7920.00 −0.645443
$$533$$ 9184.50 + 8837.79i 0.746388 + 0.718212i
$$534$$ 3384.00 0.274232
$$535$$ −2259.00 1304.23i −0.182552 0.105396i
$$536$$ −8853.00 + 15333.8i −0.713417 + 1.23567i
$$537$$ −3744.00 6484.80i −0.300867 0.521117i
$$538$$ 5767.73i 0.462202i
$$539$$ −1812.00 + 1046.16i −0.144802 + 0.0836016i
$$540$$ 750.000 433.013i 0.0597683 0.0345072i
$$541$$ 4764.87i 0.378665i −0.981913 0.189333i $$-0.939368\pi$$
0.981913 0.189333i $$-0.0606324\pi$$
$$542$$ 2430.00 + 4208.88i 0.192578 + 0.333555i
$$543$$ 637.000 1103.32i 0.0503431 0.0871968i
$$544$$ 18427.5 + 10639.1i 1.45234 + 0.838508i
$$545$$ 2688.00 0.211268
$$546$$ 1560.00 1621.20i 0.122274 0.127071i
$$547$$ 6554.00 0.512301 0.256151 0.966637i $$-0.417546\pi$$
0.256151 + 0.966637i $$0.417546\pi$$
$$548$$ 3667.50 + 2117.43i 0.285890 + 0.165059i
$$549$$ 1667.50 2888.19i 0.129631 0.224527i
$$550$$ 1464.00 + 2535.72i 0.113500 + 0.196588i
$$551$$ 16118.5i 1.24622i
$$552$$ 3042.00 1756.30i 0.234558 0.135422i
$$553$$ −15312.0 + 8840.39i −1.17745 + 0.679804i
$$554$$ 652.983i 0.0500769i
$$555$$ −249.000 431.281i −0.0190441 0.0329853i
$$556$$ −590.000 + 1021.91i −0.0450028 + 0.0779472i
$$557$$ −15685.5 9056.03i −1.19321 0.688898i −0.234174 0.972195i $$-0.575239\pi$$
−0.959032 + 0.283297i $$0.908572\pi$$
$$558$$ −6210.00 −0.471130
$$559$$ −1352.00 4683.47i −0.102296 0.354364i
$$560$$ −24.0000 −0.00181104
$$561$$ 2808.00 + 1621.20i 0.211326 + 0.122009i
$$562$$ 31.5000 54.5596i 0.00236432 0.00409512i
$$563$$ 6084.00 + 10537.8i 0.455435 + 0.788837i 0.998713 0.0507160i $$-0.0161503\pi$$
−0.543278 + 0.839553i $$0.682817\pi$$
$$564$$ 3013.77i 0.225005i
$$565$$ 1030.50 594.959i 0.0767318 0.0443011i
$$566$$ 10686.0 6169.56i 0.793580 0.458173i
$$567$$ 5833.55i 0.432074i
$$568$$ −11895.0 20602.7i −0.878703 1.52196i
$$569$$ 3861.00 6687.45i 0.284467 0.492711i −0.688013 0.725698i $$-0.741517\pi$$
0.972480 + 0.232988i $$0.0748502\pi$$
$$570$$ −594.000 342.946i −0.0436490 0.0252008i
$$571$$ 11440.0 0.838440 0.419220 0.907885i $$-0.362304\pi$$
0.419220 + 0.907885i $$0.362304\pi$$
$$572$$ 780.000 3152.33i 0.0570165 0.230429i
$$573$$ −5196.00 −0.378824
$$574$$ −5652.00 3263.18i −0.410993 0.237287i
$$575$$ 4758.00 8241.10i 0.345082 0.597700i
$$576$$ −3530.50 6115.01i −0.255389 0.442347i
$$577$$ 15444.7i 1.11433i 0.830400 + 0.557167i $$0.188112\pi$$
−0.830400 + 0.557167i $$0.811888\pi$$
$$578$$ −13164.0 + 7600.24i −0.947319 + 0.546935i
$$579$$ −1935.00 + 1117.17i −0.138887 + 0.0801867i
$$580$$ 1221.10i 0.0874194i
$$581$$ 5472.00 + 9477.78i 0.390735 + 0.676772i
$$582$$ −348.000 + 602.754i −0.0247853 + 0.0429295i
$$583$$ 1116.00 + 644.323i 0.0792796 + 0.0457721i
$$584$$ 10335.0 0.732304
$$585$$ 1794.00 517.883i 0.126791 0.0366014i
$$586$$ −14415.0 −1.01617
$$587$$ −12186.0 7035.59i −0.856848 0.494702i 0.00610719 0.999981i $$-0.498056\pi$$
−0.862956 + 0.505280i $$0.831389\pi$$
$$588$$ −755.000 + 1307.70i −0.0529518 + 0.0917153i
$$589$$ −8910.00 15432.6i −0.623311 1.07961i
$$590$$ 852.169i 0.0594631i
$$591$$ −3552.00 + 2050.75i −0.247225 + 0.142735i
$$592$$ 124.500 71.8801i 0.00864344 0.00499029i
$$593$$ 26938.6i 1.86549i 0.360538 + 0.932745i $$0.382593\pi$$
−0.360538 + 0.932745i $$0.617407\pi$$
$$594$$ −1200.00 2078.46i −0.0828899 0.143570i
$$595$$ 1404.00 2431.80i 0.0967368 0.167553i
$$596$$ 202.500 + 116.913i 0.0139173 + 0.00803517i
$$597$$ −5044.00 −0.345791
$$598$$ 6084.00 1756.30i 0.416042 0.120101i
$$599$$ −10554.0 −0.719908 −0.359954 0.932970i $$-0.617208\pi$$
−0.359954 + 0.932970i $$0.617208\pi$$
$$600$$ 4758.00 + 2747.03i 0.323741 + 0.186912i
$$601$$ 7415.50 12844.0i 0.503302 0.871745i −0.496691 0.867928i $$-0.665452\pi$$
0.999993 0.00381713i $$-0.00121503\pi$$
$$602$$ 1248.00 + 2161.60i 0.0844928 + 0.146346i
$$603$$ 18086.1i 1.22143i
$$604$$ −7665.00 + 4425.39i −0.516365 + 0.298123i
$$605$$ −1708.50 + 986.403i −0.114811 + 0.0662859i
$$606$$ 1486.10i 0.0996183i
$$607$$ 3977.00 + 6888.37i 0.265933 + 0.460610i 0.967808 0.251691i $$-0.0809866\pi$$
−0.701874 + 0.712301i $$0.747653\pi$$
$$608$$ 10395.0 18004.7i 0.693377 1.20096i
$$609$$ −3384.00 1953.75i −0.225167 0.130000i
$$610$$ −435.000 −0.0288732
$$611$$ −3393.00 + 13712.6i −0.224658 + 0.907945i
$$612$$ −13455.0 −0.888703
$$613$$ 21841.5 + 12610.2i 1.43910 + 0.830866i 0.997787 0.0664859i $$-0.0211787\pi$$
0.441315 + 0.897352i $$0.354512\pi$$
$$614$$ 1923.00 3330.73i 0.126394 0.218921i
$$615$$ 471.000 + 815.796i 0.0308822 + 0.0534895i
$$616$$ 4323.20i 0.282771i
$$617$$ −15055.5 + 8692.30i −0.982353 + 0.567162i −0.902980 0.429683i $$-0.858625\pi$$
−0.0793731 + 0.996845i $$0.525292\pi$$
$$618$$ −546.000 + 315.233i −0.0355394 + 0.0205187i
$$619$$ 8209.92i 0.533093i −0.963822 0.266547i $$-0.914117\pi$$
0.963822 0.266547i $$-0.0858826\pi$$
$$620$$ −675.000 1169.13i −0.0437236 0.0757316i
$$621$$ −3900.00 + 6755.00i −0.252015 + 0.436504i
$$622$$ 7371.00 + 4255.65i 0.475161 + 0.274334i
$$623$$ 13536.0 0.870479
$$624$$ −26.0000 90.0666i −0.00166800 0.00577813i
$$625$$ 14509.0 0.928576
$$626$$ −777.000 448.601i −0.0496089 0.0286417i
$$627$$ 1584.00 2743.57i 0.100891 0.174749i
$$628$$ −3027.50 5243.78i −0.192373 0.333200i
$$629$$ 16819.9i 1.06622i
$$630$$ −828.000 + 478.046i −0.0523624 + 0.0302314i
$$631$$ 11142.0 6432.84i 0.702941 0.405843i −0.105501 0.994419i $$-0.533645\pi$$
0.808442 + 0.588576i $$0.200311\pi$$
$$632$$ 28731.3i 1.80834i
$$633$$ −1042.00 1804.80i −0.0654278 0.113324i
$$634$$ −3391.50 + 5874.25i −0.212451 + 0.367975i
$$635$$ 429.000 + 247.683i 0.0268100 + 0.0154788i
$$636$$ 930.000 0.0579825
$$637$$ −4907.50 + 5100.02i −0.305247 + 0.317222i
$$638$$ 3384.00 0.209990
$$639$$ 21045.0 + 12150.3i 1.30286 + 0.752206i
$$640$$ 799.500 1384.77i 0.0493797 0.0855282i
$$641$$ −3100.50 5370.22i −0.191049 0.330907i 0.754549 0.656244i $$-0.227856\pi$$
−0.945598 + 0.325337i $$0.894522\pi$$
$$642$$ 5216.94i 0.320710i
$$643$$ −14568.0 + 8410.84i −0.893477 + 0.515849i −0.875078 0.483981i $$-0.839190\pi$$
−0.0183989 + 0.999831i $$0.505857\pi$$
$$644$$ 4680.00 2702.00i 0.286363 0.165332i
$$645$$ 360.267i 0.0219930i
$$646$$ 11583.0 + 20062.3i 0.705460 + 1.22189i
$$647$$ 6747.00 11686.1i 0.409972 0.710092i −0.584914 0.811095i $$-0.698872\pi$$
0.994886 + 0.101003i $$0.0322051\pi$$
$$648$$ 8209.50 + 4739.76i 0.497685 + 0.287338i
$$649$$ −3936.00 −0.238061
$$650$$ 7137.00 + 6867.58i 0.430671 + 0.414413i
$$651$$ 4320.00 0.260083
$$652$$ 4350.00 + 2511.47i 0.261287 + 0.150854i
$$653$$ 5667.00 9815.53i 0.339612 0.588226i −0.644747 0.764396i $$-0.723037\pi$$
0.984360 + 0.176170i $$0.0563708\pi$$
$$654$$ −2688.00 4655.75i −0.160717 0.278371i
$$655$$ 3419.07i 0.203960i
$$656$$ −235.500 + 135.966i −0.0140164 + 0.00809235i
$$657$$ −9142.50 + 5278.42i −0.542896 + 0.313441i
$$658$$ 7233.04i 0.428531i
$$659$$ −6618.00 11462.7i −0.391200 0.677578i 0.601408 0.798942i $$-0.294607\pi$$
−0.992608 + 0.121364i $$0.961273\pi$$
$$660$$ 120.000 207.846i 0.00707726 0.0122582i
$$661$$ −10264.5 5926.21i −0.603998 0.348718i 0.166615 0.986022i $$-0.446716\pi$$
−0.770613 + 0.637304i $$0.780050\pi$$
$$662$$ −12912.0 −0.758065
$$663$$ 10647.0 + 2634.45i 0.623673 + 0.154319i
$$664$$ −17784.0 −1.03939
$$665$$ −2376.00 1371.78i −0.138552 0.0799932i
$$666$$ 2863.50 4959.73i 0.166604 0.288567i
$$667$$ −5499.00 9524.55i −0.319224 0.552911i
$$668$$ 4572.61i 0.264850i
$$669$$ 4170.00 2407.55i 0.240989 0.139135i
$$670$$ −2043.00 + 1179.53i −0.117803 + 0.0680136i
$$671$$ 2009.18i 0.115594i
$$672$$ 2520.00 + 4364.77i 0.144659 + 0.250557i
$$673$$ −4010.50 + 6946.39i −0.229708 + 0.397866i −0.957722 0.287697i $$-0.907110\pi$$
0.728014 + 0.685563i $$0.240444\pi$$
$$674$$ −5362.50 3096.04i −0.306463 0.176936i
$$675$$ −12200.0 −0.695671
$$676$$ −422.500 10976.9i −0.0240385 0.624538i
$$677$$ −21630.0 −1.22793 −0.613965 0.789333i $$-0.710426\pi$$
−0.613965 + 0.789333i $$0.710426\pi$$
$$678$$ −2061.00 1189.92i −0.116744 0.0674020i
$$679$$ −1392.00 + 2411.01i −0.0786746 + 0.136268i
$$680$$ 2281.50 + 3951.67i 0.128664 + 0.222853i
$$681$$ 4815.10i 0.270947i
$$682$$ −3240.00 + 1870.61i −0.181915 + 0.105029i
$$683$$ −22983.0 + 13269.2i −1.28758 + 0.743387i −0.978223 0.207557i $$-0.933449\pi$$
−0.309361 + 0.950945i $$0.600115\pi$$
$$684$$ 13146.3i 0.734883i
$$685$$ 733.500 + 1270.46i 0.0409133 + 0.0708639i
$$686$$ 5928.00 10267.6i 0.329930 0.571456i
$$687$$ −4344.00 2508.01i −0.241243 0.139282i
$$688$$ 104.000 0.00576303
$$689$$ 4231.50 + 1047.02i 0.233973 + 0.0578933i
$$690$$ 468.000 0.0258210
$$691$$ −720.000 415.692i −0.0396383 0.0228852i 0.480050 0.877241i $$-0.340619\pi$$
−0.519688 + 0.854356i $$0.673952\pi$$
$$692$$ −6435.00 + 11145.7i −0.353500 + 0.612280i
$$693$$ −2208.00 3824.37i −0.121032 0.209633i
$$694$$ 12065.5i 0.659941i
$$695$$ −354.000 + 204.382i −0.0193208 + 0.0111549i
$$696$$ 5499.00 3174.85i 0.299481 0.172906i
$$697$$ 31816.0i 1.72901i
$$698$$ −5760.00 9976.61i −0.312348 0.541003i
$$699$$ 5850.00 10132.5i 0.316548 0.548278i
$$700$$ 7320.00 + 4226.20i 0.395243 + 0.228194i
$$701$$ 30186.0 1.62640 0.813202 0.581981i $$-0.197722\pi$$
0.813202 + 0.581981i $$0.197722\pi$$
$$702$$ −5850.00 5629.17i −0.314521 0.302648i
$$703$$ 16434.0 0.881679
$$704$$ −3684.00 2126.96i −0.197224 0.113868i
$$705$$ −522.000 + 904.131i −0.0278860 + 0.0483000i
$$706$$ 4876.50 + 8446.35i 0.259957 + 0.450258i
$$707$$ 5944.40i 0.316212i
$$708$$ −2460.00 + 1420.28i −0.130583 + 0.0753919i
$$709$$ −10288.5 + 5940.07i −0.544983 + 0.314646i −0.747096 0.664716i $$-0.768552\pi$$
0.202113 + 0.979362i $$0.435219\pi$$
$$710$$ 3169.65i 0.167542i
$$711$$ 14674.0 + 25416.1i 0.774006 + 1.34062i
$$712$$ −10998.0 + 19049.1i −0.578887 + 1.00266i
$$713$$ 10530.0 + 6079.50i 0.553088 + 0.319325i
$$714$$ −5616.00 −0.294361
$$715$$ 780.000 810.600i 0.0407977 0.0423982i
$$716$$ 18720.0 0.977094
$$717$$ 9324.00 + 5383.21i 0.485650 + 0.280390i
$$718$$ 6174.00 10693.7i 0.320908 0.555828i
$$719$$ −9204.00 15941.8i −0.477401 0.826883i 0.522264 0.852784i $$-0.325088\pi$$
−0.999665 + 0.0259014i $$0.991754\pi$$
$$720$$ 39.8372i 0.00206201i
$$721$$ −2184.00 + 1260.93i −0.112811 + 0.0651312i
$$722$$ 9313.50 5377.15i 0.480073 0.277170i
$$723$$ 9834.58i 0.505881i
$$724$$ 1592.50 + 2758.29i 0.0817470 + 0.141590i
$$725$$ 8601.00 14897.4i 0.440597 0.763137i
$$726$$ 3417.00 + 1972.81i 0.174679 + 0.100851i
$$727$$ 21112.0 1.07703 0.538515 0.842616i $$-0.318986\pi$$
0.538515 + 0.842616i $$0.318986\pi$$
$$728$$ 4056.00 + 14050.4i 0.206491 + 0.715305i
$$729$$ −4283.00 −0.217599
$$730$$ 1192.50 + 688.490i 0.0604608 + 0.0349071i
$$731$$ −6084.00 + 10537.8i −0.307832 + 0.533180i
$$732$$ −725.000 1255.74i −0.0366076 0.0634062i
$$733$$ 23959.5i 1.20732i −0.797243 0.603658i $$-0.793709\pi$$
0.797243 0.603658i $$-0.206291\pi$$
$$734$$ −3.00000 + 1.73205i −0.000150861 + 8.70997e-5i
$$735$$ −453.000 + 261.540i −0.0227335 + 0.0131252i
$$736$$ 14185.5i 0.710441i
$$737$$ −5448.00 9436.21i −0.272293 0.471625i
$$738$$ −5416.50 + 9381.65i −0.270168 + 0.467945i
$$739$$ 2742.00 + 1583.09i 0.136490 + 0.0788025i 0.566690 0.823931i $$-0.308224\pi$$
−0.430200 + 0.902734i $$0.641557\pi$$
$$740$$ 1245.00 0.0618474
$$741$$ 2574.00 10402.7i 0.127609 0.515726i
$$742$$ −2232.00 −0.110430
$$743$$ −26070.0 15051.5i −1.28723 0.743185i −0.309075 0.951038i $$-0.600019\pi$$
−0.978160 + 0.207852i $$0.933353\pi$$
$$744$$ −3510.00 + 6079.50i −0.172961 + 0.299577i
$$745$$ 40.5000 + 70.1481i 0.00199168 + 0.00344970i
$$746$$ 6060.45i 0.297438i
$$747$$ 15732.0 9082.87i 0.770554 0.444880i
$$748$$ −7020.00 + 4053.00i −0.343151 + 0.198118i
$$749$$ 20867.7i 1.01801i
$$750$$ 741.000 + 1283.45i 0.0360767 + 0.0624866i
$$751$$ −14248.0 + 24678.3i −0.692299 + 1.19910i 0.278783 + 0.960354i $$0.410069\pi$$
−0.971083 + 0.238744i $$0.923264\pi$$
$$752$$ −261.000 150.688i −0.0126565 0.00730724i
$$753$$ −7956.00 −0.385037
$$754$$ 10998.0 3174.85i 0.531198 0.153344i
$$755$$ −3066.00 −0.147792
$$756$$ −6000.00 3464.10i −0.288648 0.166651i
$$757$$ −8711.00 + 15087.9i −0.418239 + 0.724411i −0.995762 0.0919633i $$-0.970686\pi$$
0.577524 + 0.816374i $$0.304019\pi$$
$$758$$ 4779.00 + 8277.47i 0.228999 + 0.396638i
$$759$$ 2161.60i 0.103374i
$$760$$ 3861.00 2229.15i 0.184281 0.106394i
$$761$$ 35790.0 20663.4i 1.70484 0.984292i 0.764149 0.645040i $$-0.223159\pi$$
0.940695 0.339252i $$-0.110174\pi$$
$$762$$ 990.733i 0.0471004i
$$763$$ −10752.0 18623.0i −0.510155 0.883615i
$$764$$ 6495.00 11249.7i 0.307567 0.532721i