Properties

Label 13.4.e.a.4.1
Level $13$
Weight $4$
Character 13.4
Analytic conductor $0.767$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,4,Mod(4,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 13.e (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.767024830075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 13.4
Dual form 13.4.e.a.10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.00000 - 1.73205i) q^{2} +(3.50000 - 6.06218i) q^{3} +(2.00000 + 3.46410i) q^{4} +13.8564i q^{5} +(-21.0000 + 12.1244i) q^{6} +(19.5000 - 11.2583i) q^{7} +13.8564i q^{8} +(-11.0000 - 19.0526i) q^{9} +(24.0000 - 41.5692i) q^{10} +(-19.5000 - 11.2583i) q^{11} +28.0000 q^{12} +(-13.0000 + 45.0333i) q^{13} -78.0000 q^{14} +(84.0000 + 48.4974i) q^{15} +(40.0000 - 69.2820i) q^{16} +(-13.5000 - 23.3827i) q^{17} +76.2102i q^{18} +(-76.5000 + 44.1673i) q^{19} +(-48.0000 + 27.7128i) q^{20} -157.617i q^{21} +(39.0000 + 67.5500i) q^{22} +(-28.5000 + 49.3634i) q^{23} +(84.0000 + 48.4974i) q^{24} -67.0000 q^{25} +(117.000 - 112.583i) q^{26} +35.0000 q^{27} +(78.0000 + 45.0333i) q^{28} +(34.5000 - 59.7558i) q^{29} +(-168.000 - 290.985i) q^{30} -72.7461i q^{31} +(-144.000 + 83.1384i) q^{32} +(-136.500 + 78.8083i) q^{33} +93.5307i q^{34} +(156.000 + 270.200i) q^{35} +(44.0000 - 76.2102i) q^{36} +(-34.5000 - 19.9186i) q^{37} +306.000 q^{38} +(227.500 + 236.425i) q^{39} -192.000 q^{40} +(-340.500 - 196.588i) q^{41} +(-273.000 + 472.850i) q^{42} +(42.5000 + 73.6122i) q^{43} -90.0666i q^{44} +(264.000 - 152.420i) q^{45} +(171.000 - 98.7269i) q^{46} -342.946i q^{47} +(-280.000 - 484.974i) q^{48} +(82.0000 - 142.028i) q^{49} +(201.000 + 116.047i) q^{50} -189.000 q^{51} +(-182.000 + 45.0333i) q^{52} +426.000 q^{53} +(-105.000 - 60.6218i) q^{54} +(156.000 - 270.200i) q^{55} +(156.000 + 270.200i) q^{56} +618.342i q^{57} +(-207.000 + 119.512i) q^{58} +(-16.5000 + 9.52628i) q^{59} +387.979i q^{60} +(8.50000 + 14.7224i) q^{61} +(-126.000 + 218.238i) q^{62} +(-429.000 - 247.683i) q^{63} -64.0000 q^{64} +(-624.000 - 180.133i) q^{65} +546.000 q^{66} +(142.500 + 82.2724i) q^{67} +(54.0000 - 93.5307i) q^{68} +(199.500 + 345.544i) q^{69} -1080.80i q^{70} +(505.500 - 291.851i) q^{71} +(264.000 - 152.420i) q^{72} +1004.59i q^{73} +(69.0000 + 119.512i) q^{74} +(-234.500 + 406.166i) q^{75} +(-306.000 - 176.669i) q^{76} -507.000 q^{77} +(-273.000 - 1103.32i) q^{78} -1244.00 q^{79} +(960.000 + 554.256i) q^{80} +(419.500 - 726.595i) q^{81} +(681.000 + 1179.53i) q^{82} -426.084i q^{83} +(546.000 - 315.233i) q^{84} +(324.000 - 187.061i) q^{85} -294.449i q^{86} +(-241.500 - 418.290i) q^{87} +(156.000 - 270.200i) q^{88} +(265.500 + 153.286i) q^{89} -1056.00 q^{90} +(253.500 + 1024.51i) q^{91} -228.000 q^{92} +(-441.000 - 254.611i) q^{93} +(-594.000 + 1028.84i) q^{94} +(-612.000 - 1060.02i) q^{95} +1163.94i q^{96} +(1069.50 - 617.476i) q^{97} +(-492.000 + 284.056i) q^{98} +495.367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} + 7 q^{3} + 4 q^{4} - 42 q^{6} + 39 q^{7} - 22 q^{9} + 48 q^{10} - 39 q^{11} + 56 q^{12} - 26 q^{13} - 156 q^{14} + 168 q^{15} + 80 q^{16} - 27 q^{17} - 153 q^{19} - 96 q^{20} + 78 q^{22}+ \cdots - 984 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 1.73205i −1.06066 0.612372i −0.135045 0.990839i \(-0.543118\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) 3.50000 6.06218i 0.673575 1.16667i −0.303308 0.952893i \(-0.598091\pi\)
0.976883 0.213774i \(-0.0685756\pi\)
\(4\) 2.00000 + 3.46410i 0.250000 + 0.433013i
\(5\) 13.8564i 1.23935i 0.784857 + 0.619677i \(0.212737\pi\)
−0.784857 + 0.619677i \(0.787263\pi\)
\(6\) −21.0000 + 12.1244i −1.42887 + 0.824958i
\(7\) 19.5000 11.2583i 1.05290 0.607893i 0.129441 0.991587i \(-0.458682\pi\)
0.923460 + 0.383694i \(0.125348\pi\)
\(8\) 13.8564i 0.612372i
\(9\) −11.0000 19.0526i −0.407407 0.705650i
\(10\) 24.0000 41.5692i 0.758947 1.31453i
\(11\) −19.5000 11.2583i −0.534497 0.308592i 0.208349 0.978055i \(-0.433191\pi\)
−0.742846 + 0.669462i \(0.766525\pi\)
\(12\) 28.0000 0.673575
\(13\) −13.0000 + 45.0333i −0.277350 + 0.960769i
\(14\) −78.0000 −1.48903
\(15\) 84.0000 + 48.4974i 1.44591 + 0.834799i
\(16\) 40.0000 69.2820i 0.625000 1.08253i
\(17\) −13.5000 23.3827i −0.192602 0.333596i 0.753510 0.657437i \(-0.228359\pi\)
−0.946112 + 0.323840i \(0.895026\pi\)
\(18\) 76.2102i 0.997940i
\(19\) −76.5000 + 44.1673i −0.923700 + 0.533299i −0.884814 0.465945i \(-0.845714\pi\)
−0.0388865 + 0.999244i \(0.512381\pi\)
\(20\) −48.0000 + 27.7128i −0.536656 + 0.309839i
\(21\) 157.617i 1.63785i
\(22\) 39.0000 + 67.5500i 0.377947 + 0.654623i
\(23\) −28.5000 + 49.3634i −0.258377 + 0.447521i −0.965807 0.259261i \(-0.916521\pi\)
0.707431 + 0.706783i \(0.249854\pi\)
\(24\) 84.0000 + 48.4974i 0.714435 + 0.412479i
\(25\) −67.0000 −0.536000
\(26\) 117.000 112.583i 0.882523 0.849208i
\(27\) 35.0000 0.249472
\(28\) 78.0000 + 45.0333i 0.526451 + 0.303946i
\(29\) 34.5000 59.7558i 0.220913 0.382633i −0.734172 0.678963i \(-0.762430\pi\)
0.955086 + 0.296330i \(0.0957628\pi\)
\(30\) −168.000 290.985i −1.02242 1.77088i
\(31\) 72.7461i 0.421471i −0.977543 0.210735i \(-0.932414\pi\)
0.977543 0.210735i \(-0.0675858\pi\)
\(32\) −144.000 + 83.1384i −0.795495 + 0.459279i
\(33\) −136.500 + 78.8083i −0.720048 + 0.415720i
\(34\) 93.5307i 0.471776i
\(35\) 156.000 + 270.200i 0.753395 + 1.30492i
\(36\) 44.0000 76.2102i 0.203704 0.352825i
\(37\) −34.5000 19.9186i −0.153291 0.0885026i 0.421393 0.906878i \(-0.361541\pi\)
−0.574683 + 0.818376i \(0.694875\pi\)
\(38\) 306.000 1.30631
\(39\) 227.500 + 236.425i 0.934081 + 0.970725i
\(40\) −192.000 −0.758947
\(41\) −340.500 196.588i −1.29700 0.748826i −0.317118 0.948386i \(-0.602715\pi\)
−0.979886 + 0.199560i \(0.936049\pi\)
\(42\) −273.000 + 472.850i −1.00297 + 1.73720i
\(43\) 42.5000 + 73.6122i 0.150725 + 0.261064i 0.931494 0.363756i \(-0.118506\pi\)
−0.780769 + 0.624820i \(0.785172\pi\)
\(44\) 90.0666i 0.308592i
\(45\) 264.000 152.420i 0.874551 0.504922i
\(46\) 171.000 98.7269i 0.548099 0.316445i
\(47\) 342.946i 1.06434i −0.846639 0.532168i \(-0.821377\pi\)
0.846639 0.532168i \(-0.178623\pi\)
\(48\) −280.000 484.974i −0.841969 1.45833i
\(49\) 82.0000 142.028i 0.239067 0.414076i
\(50\) 201.000 + 116.047i 0.568514 + 0.328232i
\(51\) −189.000 −0.518927
\(52\) −182.000 + 45.0333i −0.485363 + 0.120096i
\(53\) 426.000 1.10407 0.552034 0.833822i \(-0.313852\pi\)
0.552034 + 0.833822i \(0.313852\pi\)
\(54\) −105.000 60.6218i −0.264605 0.152770i
\(55\) 156.000 270.200i 0.382455 0.662432i
\(56\) 156.000 + 270.200i 0.372257 + 0.644768i
\(57\) 618.342i 1.43687i
\(58\) −207.000 + 119.512i −0.468628 + 0.270563i
\(59\) −16.5000 + 9.52628i −0.0364088 + 0.0210206i −0.518094 0.855324i \(-0.673358\pi\)
0.481685 + 0.876344i \(0.340025\pi\)
\(60\) 387.979i 0.834799i
\(61\) 8.50000 + 14.7224i 0.0178412 + 0.0309019i 0.874808 0.484469i \(-0.160987\pi\)
−0.856967 + 0.515371i \(0.827654\pi\)
\(62\) −126.000 + 218.238i −0.258097 + 0.447037i
\(63\) −429.000 247.683i −0.857919 0.495320i
\(64\) −64.0000 −0.125000
\(65\) −624.000 180.133i −1.19073 0.343735i
\(66\) 546.000 1.01830
\(67\) 142.500 + 82.2724i 0.259838 + 0.150018i 0.624261 0.781216i \(-0.285400\pi\)
−0.364423 + 0.931234i \(0.618734\pi\)
\(68\) 54.0000 93.5307i 0.0963009 0.166798i
\(69\) 199.500 + 345.544i 0.348072 + 0.602879i
\(70\) 1080.80i 1.84543i
\(71\) 505.500 291.851i 0.844955 0.487835i −0.0139904 0.999902i \(-0.504453\pi\)
0.858945 + 0.512067i \(0.171120\pi\)
\(72\) 264.000 152.420i 0.432121 0.249485i
\(73\) 1004.59i 1.61066i 0.592826 + 0.805331i \(0.298012\pi\)
−0.592826 + 0.805331i \(0.701988\pi\)
\(74\) 69.0000 + 119.512i 0.108393 + 0.187742i
\(75\) −234.500 + 406.166i −0.361036 + 0.625333i
\(76\) −306.000 176.669i −0.461850 0.266649i
\(77\) −507.000 −0.750364
\(78\) −273.000 1103.32i −0.396297 1.60162i
\(79\) −1244.00 −1.77166 −0.885829 0.464012i \(-0.846409\pi\)
−0.885829 + 0.464012i \(0.846409\pi\)
\(80\) 960.000 + 554.256i 1.34164 + 0.774597i
\(81\) 419.500 726.595i 0.575446 0.996701i
\(82\) 681.000 + 1179.53i 0.917120 + 1.58850i
\(83\) 426.084i 0.563480i −0.959491 0.281740i \(-0.909088\pi\)
0.959491 0.281740i \(-0.0909116\pi\)
\(84\) 546.000 315.233i 0.709208 0.409462i
\(85\) 324.000 187.061i 0.413444 0.238702i
\(86\) 294.449i 0.369200i
\(87\) −241.500 418.290i −0.297604 0.515465i
\(88\) 156.000 270.200i 0.188973 0.327311i
\(89\) 265.500 + 153.286i 0.316213 + 0.182566i 0.649703 0.760188i \(-0.274893\pi\)
−0.333490 + 0.942753i \(0.608226\pi\)
\(90\) −1056.00 −1.23680
\(91\) 253.500 + 1024.51i 0.292022 + 1.18019i
\(92\) −228.000 −0.258377
\(93\) −441.000 254.611i −0.491716 0.283892i
\(94\) −594.000 + 1028.84i −0.651770 + 1.12890i
\(95\) −612.000 1060.02i −0.660946 1.14479i
\(96\) 1163.94i 1.23744i
\(97\) 1069.50 617.476i 1.11950 0.646342i 0.178225 0.983990i \(-0.442965\pi\)
0.941273 + 0.337647i \(0.109631\pi\)
\(98\) −492.000 + 284.056i −0.507138 + 0.292796i
\(99\) 495.367i 0.502891i
\(100\) −134.000 232.095i −0.134000 0.232095i
\(101\) −979.500 + 1696.54i −0.964989 + 1.67141i −0.255345 + 0.966850i \(0.582189\pi\)
−0.709645 + 0.704560i \(0.751144\pi\)
\(102\) 567.000 + 327.358i 0.550406 + 0.317777i
\(103\) 1856.00 1.77551 0.887753 0.460320i \(-0.152265\pi\)
0.887753 + 0.460320i \(0.152265\pi\)
\(104\) −624.000 180.133i −0.588348 0.169842i
\(105\) 2184.00 2.02987
\(106\) −1278.00 737.854i −1.17104 0.676101i
\(107\) 127.500 220.836i 0.115195 0.199524i −0.802663 0.596433i \(-0.796584\pi\)
0.917858 + 0.396909i \(0.129917\pi\)
\(108\) 70.0000 + 121.244i 0.0623681 + 0.108025i
\(109\) 609.682i 0.535752i −0.963453 0.267876i \(-0.913678\pi\)
0.963453 0.267876i \(-0.0863217\pi\)
\(110\) −936.000 + 540.400i −0.811310 + 0.468410i
\(111\) −241.500 + 139.430i −0.206506 + 0.119226i
\(112\) 1801.33i 1.51973i
\(113\) −205.500 355.936i −0.171078 0.296316i 0.767719 0.640787i \(-0.221392\pi\)
−0.938797 + 0.344471i \(0.888058\pi\)
\(114\) 1071.00 1855.03i 0.879898 1.52403i
\(115\) −684.000 394.908i −0.554638 0.320220i
\(116\) 276.000 0.220913
\(117\) 1001.00 247.683i 0.790961 0.195712i
\(118\) 66.0000 0.0514898
\(119\) −526.500 303.975i −0.405581 0.234162i
\(120\) −672.000 + 1163.94i −0.511208 + 0.885438i
\(121\) −412.000 713.605i −0.309542 0.536142i
\(122\) 58.8897i 0.0437018i
\(123\) −2383.50 + 1376.11i −1.74726 + 1.00878i
\(124\) 252.000 145.492i 0.182502 0.105368i
\(125\) 803.672i 0.575061i
\(126\) 858.000 + 1486.10i 0.606641 + 1.05073i
\(127\) 1121.50 1942.49i 0.783599 1.35723i −0.146234 0.989250i \(-0.546715\pi\)
0.929833 0.367983i \(-0.119951\pi\)
\(128\) 1344.00 + 775.959i 0.928078 + 0.535826i
\(129\) 595.000 0.406099
\(130\) 1560.00 + 1621.20i 1.05247 + 1.09376i
\(131\) −372.000 −0.248105 −0.124053 0.992276i \(-0.539589\pi\)
−0.124053 + 0.992276i \(0.539589\pi\)
\(132\) −546.000 315.233i −0.360024 0.207860i
\(133\) −994.500 + 1722.52i −0.648377 + 1.12302i
\(134\) −285.000 493.634i −0.183733 0.318235i
\(135\) 484.974i 0.309185i
\(136\) 324.000 187.061i 0.204285 0.117944i
\(137\) −1030.50 + 594.959i −0.642639 + 0.371028i −0.785630 0.618696i \(-0.787661\pi\)
0.142991 + 0.989724i \(0.454328\pi\)
\(138\) 1382.18i 0.852599i
\(139\) 1272.50 + 2204.03i 0.776490 + 1.34492i 0.933953 + 0.357395i \(0.116335\pi\)
−0.157464 + 0.987525i \(0.550332\pi\)
\(140\) −624.000 + 1080.80i −0.376697 + 0.652459i
\(141\) −2079.00 1200.31i −1.24173 0.716911i
\(142\) −2022.00 −1.19495
\(143\) 760.500 731.791i 0.444729 0.427940i
\(144\) −1760.00 −1.01852
\(145\) 828.000 + 478.046i 0.474218 + 0.273790i
\(146\) 1740.00 3013.77i 0.986325 1.70836i
\(147\) −574.000 994.197i −0.322059 0.557823i
\(148\) 159.349i 0.0885026i
\(149\) 1129.50 652.117i 0.621022 0.358547i −0.156245 0.987718i \(-0.549939\pi\)
0.777267 + 0.629171i \(0.216606\pi\)
\(150\) 1407.00 812.332i 0.765874 0.442177i
\(151\) 86.6025i 0.0466729i −0.999728 0.0233365i \(-0.992571\pi\)
0.999728 0.0233365i \(-0.00742890\pi\)
\(152\) −612.000 1060.02i −0.326577 0.565649i
\(153\) −297.000 + 514.419i −0.156935 + 0.271819i
\(154\) 1521.00 + 878.150i 0.795881 + 0.459502i
\(155\) 1008.00 0.522352
\(156\) −364.000 + 1260.93i −0.186816 + 0.647150i
\(157\) −1534.00 −0.779787 −0.389893 0.920860i \(-0.627488\pi\)
−0.389893 + 0.920860i \(0.627488\pi\)
\(158\) 3732.00 + 2154.67i 1.87913 + 1.08491i
\(159\) 1491.00 2582.49i 0.743673 1.28808i
\(160\) −1152.00 1995.32i −0.569210 0.985901i
\(161\) 1283.45i 0.628261i
\(162\) −2517.00 + 1453.19i −1.22070 + 0.704774i
\(163\) −1414.50 + 816.662i −0.679707 + 0.392429i −0.799745 0.600340i \(-0.795032\pi\)
0.120038 + 0.992769i \(0.461698\pi\)
\(164\) 1572.70i 0.748826i
\(165\) −1092.00 1891.40i −0.515225 0.892395i
\(166\) −738.000 + 1278.25i −0.345060 + 0.597661i
\(167\) 1408.50 + 813.198i 0.652653 + 0.376809i 0.789472 0.613787i \(-0.210355\pi\)
−0.136819 + 0.990596i \(0.543688\pi\)
\(168\) 2184.00 1.00297
\(169\) −1859.00 1170.87i −0.846154 0.532939i
\(170\) −1296.00 −0.584698
\(171\) 1683.00 + 971.681i 0.752645 + 0.434540i
\(172\) −170.000 + 294.449i −0.0753627 + 0.130532i
\(173\) 436.500 + 756.040i 0.191829 + 0.332258i 0.945857 0.324585i \(-0.105225\pi\)
−0.754027 + 0.656843i \(0.771891\pi\)
\(174\) 1673.16i 0.728977i
\(175\) −1306.50 + 754.308i −0.564355 + 0.325830i
\(176\) −1560.00 + 900.666i −0.668122 + 0.385740i
\(177\) 133.368i 0.0566359i
\(178\) −531.000 919.719i −0.223596 0.387280i
\(179\) 643.500 1114.57i 0.268701 0.465403i −0.699826 0.714314i \(-0.746739\pi\)
0.968527 + 0.248910i \(0.0800724\pi\)
\(180\) 1056.00 + 609.682i 0.437276 + 0.252461i
\(181\) 2.00000 0.000821319 0.000410660 1.00000i \(-0.499869\pi\)
0.000410660 1.00000i \(0.499869\pi\)
\(182\) 1014.00 3512.60i 0.412982 1.43061i
\(183\) 119.000 0.0480696
\(184\) −684.000 394.908i −0.274050 0.158223i
\(185\) 276.000 478.046i 0.109686 0.189982i
\(186\) 882.000 + 1527.67i 0.347696 + 0.602226i
\(187\) 607.950i 0.237742i
\(188\) 1188.00 685.892i 0.460871 0.266084i
\(189\) 682.500 394.042i 0.262670 0.151652i
\(190\) 4240.06i 1.61898i
\(191\) 1420.50 + 2460.38i 0.538135 + 0.932077i 0.999005 + 0.0446092i \(0.0142043\pi\)
−0.460870 + 0.887468i \(0.652462\pi\)
\(192\) −224.000 + 387.979i −0.0841969 + 0.145833i
\(193\) −3676.50 2122.63i −1.37119 0.791659i −0.380115 0.924939i \(-0.624115\pi\)
−0.991078 + 0.133281i \(0.957449\pi\)
\(194\) −4278.00 −1.58321
\(195\) −3276.00 + 3152.33i −1.20307 + 1.15766i
\(196\) 656.000 0.239067
\(197\) 2383.50 + 1376.11i 0.862017 + 0.497686i 0.864687 0.502311i \(-0.167517\pi\)
−0.00267023 + 0.999996i \(0.500850\pi\)
\(198\) 858.000 1486.10i 0.307957 0.533396i
\(199\) 842.500 + 1459.25i 0.300117 + 0.519818i 0.976162 0.217042i \(-0.0696410\pi\)
−0.676045 + 0.736860i \(0.736308\pi\)
\(200\) 928.379i 0.328232i
\(201\) 997.500 575.907i 0.350041 0.202096i
\(202\) 5877.00 3393.09i 2.04705 1.18187i
\(203\) 1553.65i 0.537167i
\(204\) −378.000 654.715i −0.129732 0.224702i
\(205\) 2724.00 4718.11i 0.928061 1.60745i
\(206\) −5568.00 3214.69i −1.88321 1.08727i
\(207\) 1254.00 0.421058
\(208\) 2600.00 + 2702.00i 0.866719 + 0.900721i
\(209\) 1989.00 0.658287
\(210\) −6552.00 3782.80i −2.15300 1.24304i
\(211\) −840.500 + 1455.79i −0.274229 + 0.474979i −0.969940 0.243343i \(-0.921756\pi\)
0.695711 + 0.718322i \(0.255089\pi\)
\(212\) 852.000 + 1475.71i 0.276017 + 0.478075i
\(213\) 4085.91i 1.31437i
\(214\) −765.000 + 441.673i −0.244366 + 0.141085i
\(215\) −1020.00 + 588.897i −0.323551 + 0.186802i
\(216\) 484.974i 0.152770i
\(217\) −819.000 1418.55i −0.256209 0.443767i
\(218\) −1056.00 + 1829.05i −0.328080 + 0.568250i
\(219\) 6090.00 + 3516.06i 1.87911 + 1.08490i
\(220\) 1248.00 0.382455
\(221\) 1228.50 303.975i 0.373927 0.0925229i
\(222\) 966.000 0.292044
\(223\) −3547.50 2048.15i −1.06528 0.615042i −0.138394 0.990377i \(-0.544194\pi\)
−0.926889 + 0.375336i \(0.877527\pi\)
\(224\) −1872.00 + 3242.40i −0.558385 + 0.967151i
\(225\) 737.000 + 1276.52i 0.218370 + 0.378229i
\(226\) 1423.75i 0.419054i
\(227\) 379.500 219.104i 0.110962 0.0640638i −0.443492 0.896278i \(-0.646261\pi\)
0.554454 + 0.832215i \(0.312927\pi\)
\(228\) −2142.00 + 1236.68i −0.622182 + 0.359217i
\(229\) 180.133i 0.0519805i 0.999662 + 0.0259903i \(0.00827389\pi\)
−0.999662 + 0.0259903i \(0.991726\pi\)
\(230\) 1368.00 + 2369.45i 0.392188 + 0.679290i
\(231\) −1774.50 + 3073.52i −0.505427 + 0.875424i
\(232\) 828.000 + 478.046i 0.234314 + 0.135281i
\(233\) −5778.00 −1.62459 −0.812295 0.583247i \(-0.801782\pi\)
−0.812295 + 0.583247i \(0.801782\pi\)
\(234\) −3432.00 990.733i −0.958790 0.276779i
\(235\) 4752.00 1.31909
\(236\) −66.0000 38.1051i −0.0182044 0.0105103i
\(237\) −4354.00 + 7541.35i −1.19334 + 2.06693i
\(238\) 1053.00 + 1823.85i 0.286789 + 0.496734i
\(239\) 1860.22i 0.503464i −0.967797 0.251732i \(-0.919000\pi\)
0.967797 0.251732i \(-0.0810001\pi\)
\(240\) 6720.00 3879.79i 1.80739 1.04350i
\(241\) 1783.50 1029.70i 0.476703 0.275224i −0.242339 0.970192i \(-0.577915\pi\)
0.719041 + 0.694967i \(0.244581\pi\)
\(242\) 2854.42i 0.758219i
\(243\) −2464.00 4267.77i −0.650476 1.12666i
\(244\) −34.0000 + 58.8897i −0.00892060 + 0.0154509i
\(245\) 1968.00 + 1136.23i 0.513187 + 0.296289i
\(246\) 9534.00 2.47100
\(247\) −994.500 4019.22i −0.256188 1.03537i
\(248\) 1008.00 0.258097
\(249\) −2583.00 1491.30i −0.657393 0.379546i
\(250\) 1392.00 2411.01i 0.352151 0.609944i
\(251\) −2245.50 3889.32i −0.564680 0.978055i −0.997079 0.0763724i \(-0.975666\pi\)
0.432399 0.901682i \(-0.357667\pi\)
\(252\) 1981.47i 0.495320i
\(253\) 1111.50 641.725i 0.276203 0.159466i
\(254\) −6729.00 + 3884.99i −1.66226 + 0.959708i
\(255\) 2618.86i 0.643135i
\(256\) −2432.00 4212.35i −0.593750 1.02841i
\(257\) −2725.50 + 4720.70i −0.661525 + 1.14580i 0.318690 + 0.947859i \(0.396757\pi\)
−0.980215 + 0.197936i \(0.936576\pi\)
\(258\) −1785.00 1030.57i −0.430734 0.248684i
\(259\) −897.000 −0.215200
\(260\) −624.000 2521.87i −0.148842 0.601536i
\(261\) −1518.00 −0.360007
\(262\) 1116.00 + 644.323i 0.263155 + 0.151933i
\(263\) 391.500 678.098i 0.0917906 0.158986i −0.816474 0.577382i \(-0.804074\pi\)
0.908265 + 0.418396i \(0.137408\pi\)
\(264\) −1092.00 1891.40i −0.254576 0.440938i
\(265\) 5902.83i 1.36833i
\(266\) 5967.00 3445.05i 1.37541 0.794096i
\(267\) 1858.50 1073.01i 0.425986 0.245943i
\(268\) 658.179i 0.150018i
\(269\) 2542.50 + 4403.74i 0.576279 + 0.998144i 0.995901 + 0.0904453i \(0.0288290\pi\)
−0.419623 + 0.907699i \(0.637838\pi\)
\(270\) 840.000 1454.92i 0.189336 0.327940i
\(271\) −1147.50 662.509i −0.257216 0.148504i 0.365848 0.930675i \(-0.380779\pi\)
−0.623064 + 0.782171i \(0.714112\pi\)
\(272\) −2160.00 −0.481505
\(273\) 7098.00 + 2049.02i 1.57359 + 0.454257i
\(274\) 4122.00 0.908829
\(275\) 1306.50 + 754.308i 0.286491 + 0.165405i
\(276\) −798.000 + 1382.18i −0.174036 + 0.301439i
\(277\) 1710.50 + 2962.67i 0.371025 + 0.642635i 0.989724 0.142994i \(-0.0456730\pi\)
−0.618698 + 0.785629i \(0.712340\pi\)
\(278\) 8816.14i 1.90200i
\(279\) −1386.00 + 800.207i −0.297411 + 0.171710i
\(280\) −3744.00 + 2161.60i −0.799096 + 0.461358i
\(281\) 810.600i 0.172087i 0.996291 + 0.0860433i \(0.0274223\pi\)
−0.996291 + 0.0860433i \(0.972578\pi\)
\(282\) 4158.00 + 7201.87i 0.878033 + 1.52080i
\(283\) −3588.50 + 6215.46i −0.753760 + 1.30555i 0.192228 + 0.981350i \(0.438429\pi\)
−0.945988 + 0.324201i \(0.894905\pi\)
\(284\) 2022.00 + 1167.40i 0.422478 + 0.243918i
\(285\) −8568.00 −1.78079
\(286\) −3549.00 + 878.150i −0.733765 + 0.181560i
\(287\) −8853.00 −1.82082
\(288\) 3168.00 + 1829.05i 0.648181 + 0.374228i
\(289\) 2092.00 3623.45i 0.425809 0.737523i
\(290\) −1656.00 2868.28i −0.335323 0.580796i
\(291\) 8644.67i 1.74144i
\(292\) −3480.00 + 2009.18i −0.697437 + 0.402665i
\(293\) 8065.50 4656.62i 1.60816 0.928473i 0.618381 0.785878i \(-0.287789\pi\)
0.989781 0.142595i \(-0.0455445\pi\)
\(294\) 3976.79i 0.788881i
\(295\) −132.000 228.631i −0.0260520 0.0451234i
\(296\) 276.000 478.046i 0.0541965 0.0938712i
\(297\) −682.500 394.042i −0.133342 0.0769852i
\(298\) −4518.00 −0.878257
\(299\) −1852.50 1925.17i −0.358304 0.372360i
\(300\) −1876.00 −0.361036
\(301\) 1657.50 + 956.958i 0.317398 + 0.183250i
\(302\) −150.000 + 259.808i −0.0285812 + 0.0495041i
\(303\) 6856.50 + 11875.8i 1.29999 + 2.25164i
\(304\) 7066.77i 1.33325i
\(305\) −204.000 + 117.779i −0.0382984 + 0.0221116i
\(306\) 1782.00 1028.84i 0.332909 0.192205i
\(307\) 4777.00i 0.888070i −0.896009 0.444035i \(-0.853547\pi\)
0.896009 0.444035i \(-0.146453\pi\)
\(308\) −1014.00 1756.30i −0.187591 0.324917i
\(309\) 6496.00 11251.4i 1.19594 2.07142i
\(310\) −3024.00 1745.91i −0.554038 0.319874i
\(311\) 6192.00 1.12899 0.564495 0.825436i \(-0.309071\pi\)
0.564495 + 0.825436i \(0.309071\pi\)
\(312\) −3276.00 + 3152.33i −0.594445 + 0.572005i
\(313\) −770.000 −0.139051 −0.0695255 0.997580i \(-0.522149\pi\)
−0.0695255 + 0.997580i \(0.522149\pi\)
\(314\) 4602.00 + 2656.97i 0.827089 + 0.477520i
\(315\) 3432.00 5944.40i 0.613877 1.06327i
\(316\) −2488.00 4309.34i −0.442914 0.767150i
\(317\) 8057.50i 1.42762i 0.700341 + 0.713808i \(0.253031\pi\)
−0.700341 + 0.713808i \(0.746969\pi\)
\(318\) −8946.00 + 5164.98i −1.57757 + 0.910810i
\(319\) −1345.50 + 776.825i −0.236155 + 0.136344i
\(320\) 886.810i 0.154919i
\(321\) −892.500 1545.86i −0.155185 0.268789i
\(322\) 2223.00 3850.35i 0.384730 0.666371i
\(323\) 2065.50 + 1192.52i 0.355813 + 0.205429i
\(324\) 3356.00 0.575446
\(325\) 871.000 3017.23i 0.148660 0.514972i
\(326\) 5658.00 0.961250
\(327\) −3696.00 2133.89i −0.625044 0.360869i
\(328\) 2724.00 4718.11i 0.458560 0.794250i
\(329\) −3861.00 6687.45i −0.647002 1.12064i
\(330\) 7565.60i 1.26204i
\(331\) −4570.50 + 2638.78i −0.758965 + 0.438189i −0.828924 0.559361i \(-0.811046\pi\)
0.0699590 + 0.997550i \(0.477713\pi\)
\(332\) 1476.00 852.169i 0.243994 0.140870i
\(333\) 876.418i 0.144226i
\(334\) −2817.00 4879.19i −0.461495 0.799333i
\(335\) −1140.00 + 1974.54i −0.185925 + 0.322031i
\(336\) −10920.0 6304.66i −1.77302 1.02365i
\(337\) 8278.00 1.33808 0.669038 0.743228i \(-0.266706\pi\)
0.669038 + 0.743228i \(0.266706\pi\)
\(338\) 3549.00 + 6732.48i 0.571125 + 1.08343i
\(339\) −2877.00 −0.460936
\(340\) 1296.00 + 748.246i 0.206722 + 0.119351i
\(341\) −819.000 + 1418.55i −0.130063 + 0.225275i
\(342\) −3366.00 5830.08i −0.532200 0.921798i
\(343\) 4030.48i 0.634477i
\(344\) −1020.00 + 588.897i −0.159868 + 0.0923000i
\(345\) −4788.00 + 2764.35i −0.747180 + 0.431385i
\(346\) 3024.16i 0.469884i
\(347\) −3433.50 5947.00i −0.531181 0.920033i −0.999338 0.0363875i \(-0.988415\pi\)
0.468156 0.883646i \(-0.344918\pi\)
\(348\) 966.000 1673.16i 0.148802 0.257732i
\(349\) 10525.5 + 6076.90i 1.61438 + 0.932060i 0.988340 + 0.152266i \(0.0486571\pi\)
0.626036 + 0.779794i \(0.284676\pi\)
\(350\) 5226.00 0.798118
\(351\) −455.000 + 1576.17i −0.0691912 + 0.239685i
\(352\) 3744.00 0.566920
\(353\) 5029.50 + 2903.78i 0.758338 + 0.437827i 0.828699 0.559695i \(-0.189082\pi\)
−0.0703608 + 0.997522i \(0.522415\pi\)
\(354\) 231.000 400.104i 0.0346822 0.0600714i
\(355\) 4044.00 + 7004.41i 0.604601 + 1.04720i
\(356\) 1226.29i 0.182566i
\(357\) −3685.50 + 2127.82i −0.546379 + 0.315452i
\(358\) −3861.00 + 2229.15i −0.570001 + 0.329090i
\(359\) 1340.61i 0.197088i 0.995133 + 0.0985439i \(0.0314185\pi\)
−0.995133 + 0.0985439i \(0.968581\pi\)
\(360\) 2112.00 + 3658.09i 0.309200 + 0.535551i
\(361\) 472.000 817.528i 0.0688147 0.119191i
\(362\) −6.00000 3.46410i −0.000871141 0.000502953i
\(363\) −5768.00 −0.833999
\(364\) −3042.00 + 2927.17i −0.438033 + 0.421498i
\(365\) −13920.0 −1.99618
\(366\) −357.000 206.114i −0.0509855 0.0294365i
\(367\) −1832.50 + 3173.98i −0.260642 + 0.451446i −0.966413 0.256995i \(-0.917268\pi\)
0.705770 + 0.708441i \(0.250601\pi\)
\(368\) 2280.00 + 3949.08i 0.322971 + 0.559402i
\(369\) 8649.86i 1.22031i
\(370\) −1656.00 + 956.092i −0.232679 + 0.134337i
\(371\) 8307.00 4796.05i 1.16247 0.671155i
\(372\) 2036.89i 0.283892i
\(373\) −2685.50 4651.42i −0.372788 0.645688i 0.617205 0.786802i \(-0.288265\pi\)
−0.989993 + 0.141114i \(0.954931\pi\)
\(374\) 1053.00 1823.85i 0.145586 0.252163i
\(375\) 4872.00 + 2812.85i 0.670904 + 0.387347i
\(376\) 4752.00 0.651770
\(377\) 2242.50 + 2330.47i 0.306352 + 0.318370i
\(378\) −2730.00 −0.371471
\(379\) −9967.50 5754.74i −1.35091 0.779950i −0.362536 0.931970i \(-0.618089\pi\)
−0.988377 + 0.152020i \(0.951422\pi\)
\(380\) 2448.00 4240.06i 0.330473 0.572396i
\(381\) −7850.50 13597.5i −1.05563 1.82840i
\(382\) 9841.51i 1.31816i
\(383\) 2095.50 1209.84i 0.279569 0.161409i −0.353659 0.935374i \(-0.615063\pi\)
0.633228 + 0.773965i \(0.281729\pi\)
\(384\) 9408.00 5431.71i 1.25026 0.721838i
\(385\) 7025.20i 0.929967i
\(386\) 7353.00 + 12735.8i 0.969580 + 1.67936i
\(387\) 935.000 1619.47i 0.122813 0.212719i
\(388\) 4278.00 + 2469.90i 0.559749 + 0.323171i
\(389\) −9858.00 −1.28489 −0.642443 0.766334i \(-0.722079\pi\)
−0.642443 + 0.766334i \(0.722079\pi\)
\(390\) 15288.0 3782.80i 1.98497 0.491152i
\(391\) 1539.00 0.199055
\(392\) 1968.00 + 1136.23i 0.253569 + 0.146398i
\(393\) −1302.00 + 2255.13i −0.167118 + 0.289456i
\(394\) −4767.00 8256.69i −0.609538 1.05575i
\(395\) 17237.4i 2.19571i
\(396\) −1716.00 + 990.733i −0.217758 + 0.125723i
\(397\) −7552.50 + 4360.44i −0.954784 + 0.551245i −0.894564 0.446941i \(-0.852514\pi\)
−0.0602200 + 0.998185i \(0.519180\pi\)
\(398\) 5837.01i 0.735133i
\(399\) 6961.50 + 12057.7i 0.873461 + 1.51288i
\(400\) −2680.00 + 4641.90i −0.335000 + 0.580237i
\(401\) −6568.50 3792.33i −0.817993 0.472269i 0.0317308 0.999496i \(-0.489898\pi\)
−0.849724 + 0.527228i \(0.823231\pi\)
\(402\) −3990.00 −0.495033
\(403\) 3276.00 + 945.700i 0.404936 + 0.116895i
\(404\) −7836.00 −0.964989
\(405\) 10068.0 + 5812.76i 1.23527 + 0.713181i
\(406\) −2691.00 + 4660.95i −0.328946 + 0.569751i
\(407\) 448.500 + 776.825i 0.0546224 + 0.0946088i
\(408\) 2618.86i 0.317777i
\(409\) 3727.50 2152.07i 0.450643 0.260179i −0.257459 0.966289i \(-0.582885\pi\)
0.708102 + 0.706110i \(0.249552\pi\)
\(410\) −16344.0 + 9436.21i −1.96871 + 1.13664i
\(411\) 8329.43i 0.999661i
\(412\) 3712.00 + 6429.37i 0.443876 + 0.768817i
\(413\) −214.500 + 371.525i −0.0255565 + 0.0442652i
\(414\) −3762.00 2171.99i −0.446600 0.257844i
\(415\) 5904.00 0.698352
\(416\) −1872.00 7565.60i −0.220631 0.891668i
\(417\) 17815.0 2.09210
\(418\) −5967.00 3445.05i −0.698219 0.403117i
\(419\) −2698.50 + 4673.94i −0.314631 + 0.544957i −0.979359 0.202129i \(-0.935214\pi\)
0.664728 + 0.747085i \(0.268547\pi\)
\(420\) 4368.00 + 7565.60i 0.507468 + 0.878960i
\(421\) 7260.76i 0.840541i 0.907399 + 0.420270i \(0.138065\pi\)
−0.907399 + 0.420270i \(0.861935\pi\)
\(422\) 5043.00 2911.58i 0.581728 0.335861i
\(423\) −6534.00 + 3772.41i −0.751050 + 0.433619i
\(424\) 5902.83i 0.676101i
\(425\) 904.500 + 1566.64i 0.103235 + 0.178808i
\(426\) −7077.00 + 12257.7i −0.804887 + 1.39410i
\(427\) 331.500 + 191.392i 0.0375700 + 0.0216911i
\(428\) 1020.00 0.115195
\(429\) −1774.50 7171.56i −0.199706 0.807100i
\(430\) 4080.00 0.457570
\(431\) −421.500 243.353i −0.0471066 0.0271970i 0.476262 0.879304i \(-0.341991\pi\)
−0.523368 + 0.852107i \(0.675325\pi\)
\(432\) 1400.00 2424.87i 0.155920 0.270062i
\(433\) −6069.50 10512.7i −0.673629 1.16676i −0.976867 0.213846i \(-0.931401\pi\)
0.303238 0.952915i \(-0.401932\pi\)
\(434\) 5674.20i 0.627581i
\(435\) 5796.00 3346.32i 0.638844 0.368836i
\(436\) 2112.00 1219.36i 0.231987 0.133938i
\(437\) 5035.07i 0.551167i
\(438\) −12180.0 21096.4i −1.32873 2.30142i
\(439\) −230.500 + 399.238i −0.0250596 + 0.0434045i −0.878283 0.478141i \(-0.841311\pi\)
0.853224 + 0.521545i \(0.174644\pi\)
\(440\) 3744.00 + 2161.60i 0.405655 + 0.234205i
\(441\) −3608.00 −0.389591
\(442\) −4212.00 1215.90i −0.453268 0.130847i
\(443\) 12156.0 1.30372 0.651861 0.758338i \(-0.273988\pi\)
0.651861 + 0.758338i \(0.273988\pi\)
\(444\) −966.000 557.720i −0.103253 0.0596131i
\(445\) −2124.00 + 3678.88i −0.226263 + 0.391900i
\(446\) 7095.00 + 12288.9i 0.753269 + 1.30470i
\(447\) 9129.64i 0.966034i
\(448\) −1248.00 + 720.533i −0.131613 + 0.0759866i
\(449\) −256.500 + 148.090i −0.0269599 + 0.0155653i −0.513419 0.858138i \(-0.671621\pi\)
0.486459 + 0.873703i \(0.338288\pi\)
\(450\) 5106.09i 0.534896i
\(451\) 4426.50 + 7666.92i 0.462164 + 0.800491i
\(452\) 822.000 1423.75i 0.0855390 0.148158i
\(453\) −525.000 303.109i −0.0544518 0.0314377i
\(454\) −1518.00 −0.156924
\(455\) −14196.0 + 3512.60i −1.46268 + 0.361919i
\(456\) −8568.00 −0.879898
\(457\) 529.500 + 305.707i 0.0541990 + 0.0312918i 0.526855 0.849955i \(-0.323371\pi\)
−0.472656 + 0.881247i \(0.656705\pi\)
\(458\) 312.000 540.400i 0.0318314 0.0551337i
\(459\) −472.500 818.394i −0.0480488 0.0832230i
\(460\) 3159.26i 0.320220i
\(461\) −11368.5 + 6563.61i −1.14855 + 0.663119i −0.948535 0.316673i \(-0.897434\pi\)
−0.200020 + 0.979792i \(0.564101\pi\)
\(462\) 10647.0 6147.05i 1.07217 0.619019i
\(463\) 834.848i 0.0837985i −0.999122 0.0418992i \(-0.986659\pi\)
0.999122 0.0418992i \(-0.0133408\pi\)
\(464\) −2760.00 4780.46i −0.276142 0.478292i
\(465\) 3528.00 6110.68i 0.351843 0.609410i
\(466\) 17334.0 + 10007.8i 1.72314 + 0.994854i
\(467\) 14496.0 1.43639 0.718196 0.695841i \(-0.244968\pi\)
0.718196 + 0.695841i \(0.244968\pi\)
\(468\) 2860.00 + 2972.20i 0.282486 + 0.293568i
\(469\) 3705.00 0.364778
\(470\) −14256.0 8230.71i −1.39911 0.807775i
\(471\) −5369.00 + 9299.38i −0.525245 + 0.909751i
\(472\) −132.000 228.631i −0.0128724 0.0222957i
\(473\) 1913.92i 0.186051i
\(474\) 26124.0 15082.7i 2.53147 1.46154i
\(475\) 5125.50 2959.21i 0.495103 0.285848i
\(476\) 2431.80i 0.234162i
\(477\) −4686.00 8116.39i −0.449805 0.779086i
\(478\) −3222.00 + 5580.67i −0.308307 + 0.534004i
\(479\) −7705.50 4448.77i −0.735017 0.424362i 0.0852376 0.996361i \(-0.472835\pi\)
−0.820255 + 0.571998i \(0.806168\pi\)
\(480\) −16128.0 −1.53362
\(481\) 1345.50 1294.71i 0.127546 0.122731i
\(482\) −7134.00 −0.674159
\(483\) 7780.50 + 4492.07i 0.732971 + 0.423181i
\(484\) 1648.00 2854.42i 0.154771 0.268071i
\(485\) 8556.00 + 14819.4i 0.801047 + 1.38745i
\(486\) 17071.1i 1.59333i
\(487\) 4117.50 2377.24i 0.383125 0.221197i −0.296052 0.955172i \(-0.595670\pi\)
0.679177 + 0.733975i \(0.262337\pi\)
\(488\) −204.000 + 117.779i −0.0189235 + 0.0109255i
\(489\) 11433.3i 1.05732i
\(490\) −3936.00 6817.35i −0.362878 0.628524i
\(491\) 817.500 1415.95i 0.0751390 0.130145i −0.826008 0.563659i \(-0.809393\pi\)
0.901147 + 0.433514i \(0.142727\pi\)
\(492\) −9534.00 5504.46i −0.873630 0.504390i
\(493\) −1863.00 −0.170193
\(494\) −3978.00 + 13780.2i −0.362305 + 1.25506i
\(495\) −6864.00 −0.623260
\(496\) −5040.00 2909.85i −0.456255 0.263419i
\(497\) 6571.50 11382.2i 0.593103 1.02728i
\(498\) 5166.00 + 8947.77i 0.464847 + 0.805139i
\(499\) 14434.9i 1.29498i −0.762074 0.647490i \(-0.775819\pi\)
0.762074 0.647490i \(-0.224181\pi\)
\(500\) −2784.00 + 1607.34i −0.249009 + 0.143765i
\(501\) 9859.50 5692.38i 0.879222 0.507619i
\(502\) 15557.3i 1.38318i
\(503\) −6343.50 10987.3i −0.562312 0.973952i −0.997294 0.0735133i \(-0.976579\pi\)
0.434983 0.900439i \(-0.356754\pi\)
\(504\) 3432.00 5944.40i 0.303320 0.525366i
\(505\) −23508.0 13572.4i −2.07147 1.19596i
\(506\) −4446.00 −0.390610
\(507\) −13604.5 + 7171.56i −1.19171 + 0.628205i
\(508\) 8972.00 0.783599
\(509\) −4978.50 2874.34i −0.433533 0.250300i 0.267318 0.963608i \(-0.413863\pi\)
−0.700850 + 0.713308i \(0.747196\pi\)
\(510\) −4536.00 + 7856.58i −0.393838 + 0.682148i
\(511\) 11310.0 + 19589.5i 0.979109 + 1.69587i
\(512\) 4434.05i 0.382733i
\(513\) −2677.50 + 1545.86i −0.230438 + 0.133043i
\(514\) 16353.0 9441.41i 1.40331 0.810200i
\(515\) 25717.5i 2.20048i
\(516\) 1190.00 + 2061.14i 0.101525 + 0.175846i
\(517\) −3861.00 + 6687.45i −0.328446 + 0.568885i
\(518\) 2691.00 + 1553.65i 0.228254 + 0.131783i
\(519\) 6111.00 0.516846
\(520\) 2496.00 8646.40i 0.210494 0.729172i
\(521\) 6054.00 0.509080 0.254540 0.967062i \(-0.418076\pi\)
0.254540 + 0.967062i \(0.418076\pi\)
\(522\) 4554.00 + 2629.25i 0.381845 + 0.220458i
\(523\) 7401.50 12819.8i 0.618824 1.07183i −0.370877 0.928682i \(-0.620943\pi\)
0.989701 0.143153i \(-0.0457240\pi\)
\(524\) −744.000 1288.65i −0.0620263 0.107433i
\(525\) 10560.3i 0.877885i
\(526\) −2349.00 + 1356.20i −0.194717 + 0.112420i
\(527\) −1701.00 + 982.073i −0.140601 + 0.0811760i
\(528\) 12609.3i 1.03930i
\(529\) 4459.00 + 7723.21i 0.366483 + 0.634767i
\(530\) 10224.0 17708.5i 0.837929 1.45133i
\(531\) 363.000 + 209.578i 0.0296664 + 0.0171279i
\(532\) −7956.00 −0.648377
\(533\) 13279.5 12778.2i 1.07917 1.03843i
\(534\) −7434.00 −0.602436
\(535\) 3060.00 + 1766.69i 0.247281 + 0.142768i
\(536\) −1140.00 + 1974.54i −0.0918666 + 0.159118i
\(537\) −4504.50 7802.02i −0.361980 0.626969i
\(538\) 17615.0i 1.41159i
\(539\) −3198.00 + 1846.37i −0.255561 + 0.147548i
\(540\) −1680.00 + 969.948i −0.133881 + 0.0772962i
\(541\) 21470.5i 1.70626i −0.521695 0.853132i \(-0.674700\pi\)
0.521695 0.853132i \(-0.325300\pi\)
\(542\) 2295.00 + 3975.06i 0.181880 + 0.315025i
\(543\) 7.00000 12.1244i 0.000553221 0.000958206i
\(544\) 3888.00 + 2244.74i 0.306428 + 0.176916i
\(545\) 8448.00 0.663986
\(546\) −17745.0 18441.1i −1.39087 1.44544i
\(547\) −13516.0 −1.05649 −0.528247 0.849091i \(-0.677151\pi\)
−0.528247 + 0.849091i \(0.677151\pi\)
\(548\) −4122.00 2379.84i −0.321320 0.185514i
\(549\) 187.000 323.894i 0.0145373 0.0251793i
\(550\) −2613.00 4525.85i −0.202579 0.350878i
\(551\) 6095.09i 0.471251i
\(552\) −4788.00 + 2764.35i −0.369186 + 0.213150i
\(553\) −24258.0 + 14005.4i −1.86538 + 1.07698i
\(554\) 11850.7i 0.908822i
\(555\) −1932.00 3346.32i −0.147764 0.255934i
\(556\) −5090.00 + 8816.14i −0.388245 + 0.672460i
\(557\) 2503.50 + 1445.40i 0.190443 + 0.109952i 0.592190 0.805798i \(-0.298264\pi\)
−0.401747 + 0.915751i \(0.631597\pi\)
\(558\) 5544.00 0.420603
\(559\) −3867.50 + 956.958i −0.292626 + 0.0724061i
\(560\) 24960.0 1.88349
\(561\) 3685.50 + 2127.82i 0.277365 + 0.160137i
\(562\) 1404.00 2431.80i 0.105381 0.182525i
\(563\) −5791.50 10031.2i −0.433539 0.750912i 0.563636 0.826023i \(-0.309402\pi\)
−0.997175 + 0.0751113i \(0.976069\pi\)
\(564\) 9602.49i 0.716911i
\(565\) 4932.00 2847.49i 0.367240 0.212026i
\(566\) 21531.0 12430.9i 1.59897 0.923164i
\(567\) 18891.5i 1.39924i
\(568\) 4044.00 + 7004.41i 0.298737 + 0.517427i
\(569\) −6439.50 + 11153.5i −0.474443 + 0.821759i −0.999572 0.0292638i \(-0.990684\pi\)
0.525129 + 0.851023i \(0.324017\pi\)
\(570\) 25704.0 + 14840.2i 1.88881 + 1.09051i
\(571\) −11636.0 −0.852805 −0.426402 0.904534i \(-0.640219\pi\)
−0.426402 + 0.904534i \(0.640219\pi\)
\(572\) 4056.00 + 1170.87i 0.296486 + 0.0855881i
\(573\) 19887.0 1.44990
\(574\) 26559.0 + 15333.8i 1.93127 + 1.11502i
\(575\) 1909.50 3307.35i 0.138490 0.239871i
\(576\) 704.000 + 1219.36i 0.0509259 + 0.0882063i
\(577\) 12311.4i 0.888269i 0.895960 + 0.444134i \(0.146489\pi\)
−0.895960 + 0.444134i \(0.853511\pi\)
\(578\) −12552.0 + 7246.90i −0.903277 + 0.521507i
\(579\) −25735.5 + 14858.4i −1.84720 + 1.06648i
\(580\) 3824.37i 0.273790i
\(581\) −4797.00 8308.65i −0.342535 0.593289i
\(582\) −14973.0 + 25934.0i −1.06641 + 1.84708i
\(583\) −8307.00 4796.05i −0.590121 0.340707i
\(584\) −13920.0 −0.986325
\(585\) 3432.00 + 13870.3i 0.242557 + 0.980282i
\(586\) −32262.0 −2.27428
\(587\) −13549.5 7822.81i −0.952722 0.550054i −0.0587964 0.998270i \(-0.518726\pi\)
−0.893925 + 0.448216i \(0.852060\pi\)
\(588\) 2296.00 3976.79i 0.161030 0.278912i
\(589\) 3213.00 + 5565.08i 0.224770 + 0.389313i
\(590\) 914.523i 0.0638141i
\(591\) 16684.5 9632.80i 1.16127 0.670458i
\(592\) −2760.00 + 1593.49i −0.191614 + 0.110628i
\(593\) 25821.4i 1.78813i 0.447942 + 0.894063i \(0.352157\pi\)
−0.447942 + 0.894063i \(0.647843\pi\)
\(594\) 1365.00 + 2364.25i 0.0942873 + 0.163310i
\(595\) 4212.00 7295.40i 0.290210 0.502659i
\(596\) 4518.00 + 2608.47i 0.310511 + 0.179274i
\(597\) 11795.0 0.808605
\(598\) 2223.00 + 8984.15i 0.152015 + 0.614363i
\(599\) 1668.00 0.113777 0.0568887 0.998381i \(-0.481882\pi\)
0.0568887 + 0.998381i \(0.481882\pi\)
\(600\) −5628.00 3249.33i −0.382937 0.221089i
\(601\) −6849.50 + 11863.7i −0.464887 + 0.805207i −0.999196 0.0400813i \(-0.987238\pi\)
0.534310 + 0.845289i \(0.320572\pi\)
\(602\) −3315.00 5741.75i −0.224434 0.388731i
\(603\) 3619.99i 0.244473i
\(604\) 300.000 173.205i 0.0202100 0.0116682i
\(605\) 9888.00 5708.84i 0.664470 0.383632i
\(606\) 47503.2i 3.18430i
\(607\) 11586.5 + 20068.4i 0.774764 + 1.34193i 0.934927 + 0.354839i \(0.115464\pi\)
−0.160164 + 0.987090i \(0.551202\pi\)
\(608\) 7344.00 12720.2i 0.489866 0.848473i
\(609\) −9418.50 5437.77i −0.626694 0.361822i
\(610\) 816.000 0.0541621
\(611\) 15444.0 + 4458.30i 1.02258 + 0.295194i
\(612\) −2376.00 −0.156935
\(613\) 14389.5 + 8307.78i 0.948102 + 0.547387i 0.892491 0.451066i \(-0.148956\pi\)
0.0556111 + 0.998453i \(0.482289\pi\)
\(614\) −8274.00 + 14331.0i −0.543830 + 0.941941i
\(615\) −19068.0 33026.7i −1.25024 2.16547i
\(616\) 7025.20i 0.459502i
\(617\) 24589.5 14196.8i 1.60443 0.926321i 0.613849 0.789423i \(-0.289620\pi\)
0.990585 0.136897i \(-0.0437130\pi\)
\(618\) −38976.0 + 22502.8i −2.53697 + 1.46472i
\(619\) 6245.78i 0.405556i −0.979225 0.202778i \(-0.935003\pi\)
0.979225 0.202778i \(-0.0649969\pi\)
\(620\) 2016.00 + 3491.81i 0.130588 + 0.226185i
\(621\) −997.500 + 1727.72i −0.0644578 + 0.111644i
\(622\) −18576.0 10724.9i −1.19748 0.691363i
\(623\) 6903.00 0.443921
\(624\) 25480.0 6304.66i 1.63464 0.404469i
\(625\) −19511.0 −1.24870
\(626\) 2310.00 + 1333.68i 0.147486 + 0.0851510i
\(627\) 6961.50 12057.7i 0.443406 0.768002i
\(628\) −3068.00 5313.93i −0.194947 0.337658i
\(629\) 1075.60i 0.0681830i
\(630\) −20592.0 + 11888.8i −1.30223 + 0.751843i
\(631\) 19381.5 11189.9i 1.22277 0.705964i 0.257259 0.966342i \(-0.417181\pi\)
0.965507 + 0.260378i \(0.0838472\pi\)
\(632\) 17237.4i 1.08491i
\(633\) 5883.50 + 10190.5i 0.369428 + 0.639869i
\(634\) 13956.0 24172.5i 0.874233 1.51422i
\(635\) 26916.0 + 15540.0i 1.68209 + 0.971157i
\(636\) 11928.0 0.743673
\(637\) 5330.00 + 5539.10i 0.331526 + 0.344532i
\(638\) 5382.00 0.333974
\(639\) −11121.0 6420.71i −0.688482 0.397495i
\(640\) −10752.0 + 18623.0i −0.664078 + 1.15022i
\(641\) −9913.50 17170.7i −0.610858 1.05804i −0.991096 0.133148i \(-0.957491\pi\)
0.380239 0.924888i \(-0.375842\pi\)
\(642\) 6183.42i 0.380125i
\(643\) −7318.50 + 4225.34i −0.448855 + 0.259146i −0.707346 0.706867i \(-0.750108\pi\)
0.258492 + 0.966013i \(0.416775\pi\)
\(644\) −4446.00 + 2566.90i −0.272045 + 0.157065i
\(645\) 8244.56i 0.503301i
\(646\) −4131.00 7155.10i −0.251598 0.435780i
\(647\) −1474.50 + 2553.91i −0.0895959 + 0.155185i −0.907340 0.420397i \(-0.861891\pi\)
0.817744 + 0.575581i \(0.195224\pi\)
\(648\) 10068.0 + 5812.76i 0.610352 + 0.352387i
\(649\) 429.000 0.0259472
\(650\) −7839.00 + 7543.08i −0.473032 + 0.455175i
\(651\) −11466.0 −0.690304
\(652\) −5658.00 3266.65i −0.339853 0.196214i
\(653\) −6019.50 + 10426.1i −0.360737 + 0.624815i −0.988082 0.153926i \(-0.950808\pi\)
0.627345 + 0.778741i \(0.284141\pi\)
\(654\) 7392.00 + 12803.3i 0.441973 + 0.765519i
\(655\) 5154.58i 0.307490i
\(656\) −27240.0 + 15727.0i −1.62126 + 0.936032i
\(657\) 19140.0 11050.5i 1.13656 0.656196i
\(658\) 26749.8i 1.58483i
\(659\) −1681.50 2912.44i −0.0993960 0.172159i 0.812039 0.583603i \(-0.198358\pi\)
−0.911435 + 0.411445i \(0.865024\pi\)
\(660\) 4368.00 7565.60i 0.257612 0.446198i
\(661\) 8797.50 + 5079.24i 0.517675 + 0.298880i 0.735983 0.677000i \(-0.236720\pi\)
−0.218308 + 0.975880i \(0.570054\pi\)
\(662\) 18282.0 1.07334
\(663\) 2457.00 8511.30i 0.143925 0.498569i
\(664\) 5904.00 0.345060
\(665\) −23868.0 13780.2i −1.39182 0.803569i
\(666\) 1518.00 2629.25i 0.0883203 0.152975i
\(667\) 1966.50 + 3406.08i 0.114158 + 0.197727i
\(668\) 6505.58i 0.376809i
\(669\) −24832.5 + 14337.1i −1.43510 + 0.828554i
\(670\) 6840.00 3949.08i 0.394406 0.227711i
\(671\) 382.783i 0.0220226i
\(672\) 13104.0 + 22696.8i 0.752229 + 1.30290i
\(673\) 9084.50 15734.8i 0.520329 0.901237i −0.479391 0.877601i \(-0.659142\pi\)
0.999721 0.0236358i \(-0.00752419\pi\)
\(674\) −24834.0 14337.9i −1.41924 0.819400i
\(675\) −2345.00 −0.133717
\(676\) 338.000 8781.50i 0.0192308 0.499630i
\(677\) 9042.00 0.513312 0.256656 0.966503i \(-0.417379\pi\)
0.256656 + 0.966503i \(0.417379\pi\)
\(678\) 8631.00 + 4983.11i 0.488896 + 0.282264i
\(679\) 13903.5 24081.6i 0.785813 1.36107i
\(680\) 2592.00 + 4489.48i 0.146175 + 0.253182i
\(681\) 3067.46i 0.172607i
\(682\) 4914.00 2837.10i 0.275904 0.159293i
\(683\) −10792.5 + 6231.05i −0.604632 + 0.349084i −0.770862 0.637003i \(-0.780174\pi\)
0.166230 + 0.986087i \(0.446841\pi\)
\(684\) 7773.44i 0.434540i
\(685\) −8244.00 14279.0i −0.459835 0.796458i
\(686\) 6981.00 12091.4i 0.388536 0.672964i
\(687\) 1092.00 + 630.466i 0.0606440 + 0.0350128i
\(688\) 6800.00 0.376813
\(689\) −5538.00 + 19184.2i −0.306213 + 1.06075i
\(690\) 19152.0 1.05667
\(691\) −3739.50 2159.00i −0.205872 0.118860i 0.393520 0.919316i \(-0.371257\pi\)
−0.599391 + 0.800456i \(0.704591\pi\)
\(692\) −1746.00 + 3024.16i −0.0959147 + 0.166129i
\(693\) 5577.00 + 9659.65i 0.305704 + 0.529494i
\(694\) 23788.0i 1.30112i
\(695\) −30540.0 + 17632.3i −1.66683 + 0.962346i
\(696\) 5796.00 3346.32i 0.315656 0.182244i
\(697\) 10615.7i 0.576901i
\(698\) −21051.0 36461.4i −1.14154 1.97720i
\(699\) −20223.0 + 35027.3i −1.09428 + 1.89535i
\(700\) −5226.00 3017.23i −0.282177 0.162915i
\(701\) −18270.0 −0.984377 −0.492189 0.870489i \(-0.663803\pi\)
−0.492189 + 0.870489i \(0.663803\pi\)
\(702\) 4095.00 3940.42i 0.220165 0.211854i
\(703\) 3519.00 0.188793
\(704\) 1248.00 + 720.533i 0.0668122 + 0.0385740i
\(705\) 16632.0 28807.5i 0.888507 1.53894i
\(706\) −10059.0 17422.7i −0.536226 0.928770i
\(707\) 44110.1i 2.34644i
\(708\) −462.000 + 266.736i −0.0245240 + 0.0141590i
\(709\) 1411.50 814.930i 0.0747673 0.0431669i −0.462150 0.886802i \(-0.652922\pi\)
0.536918 + 0.843635i \(0.319589\pi\)
\(710\) 28017.7i 1.48096i
\(711\) 13684.0 + 23701.4i 0.721786 + 1.25017i
\(712\) −2124.00 + 3678.88i −0.111798 + 0.193640i
\(713\) 3591.00 + 2073.26i 0.188617 + 0.108898i
\(714\) 14742.0 0.772697
\(715\) 10140.0 + 10537.8i 0.530370 + 0.551177i
\(716\) 5148.00 0.268701
\(717\) −11277.0 6510.78i −0.587374 0.339121i
\(718\) 2322.00 4021.82i 0.120691 0.209043i
\(719\) −4915.50 8513.90i −0.254961 0.441606i 0.709924 0.704279i \(-0.248729\pi\)
−0.964885 + 0.262673i \(0.915396\pi\)
\(720\) 24387.3i 1.26231i
\(721\) 36192.0 20895.5i 1.86943 1.07932i
\(722\) −2832.00 + 1635.06i −0.145978 + 0.0842804i
\(723\) 14415.9i 0.741537i
\(724\) 4.00000 + 6.92820i 0.000205330 + 0.000355642i
\(725\) −2311.50 + 4003.64i −0.118410 + 0.205091i
\(726\) 17304.0 + 9990.47i 0.884589 + 0.510718i
\(727\) −15464.0 −0.788897 −0.394448 0.918918i \(-0.629064\pi\)
−0.394448 + 0.918918i \(0.629064\pi\)
\(728\) −14196.0 + 3512.60i −0.722718 + 0.178826i
\(729\) −11843.0 −0.601687
\(730\) 41760.0 + 24110.1i 2.11727 + 1.22241i
\(731\) 1147.50 1987.53i 0.0580599 0.100563i
\(732\) 238.000 + 412.228i 0.0120174 + 0.0208147i
\(733\) 12616.3i 0.635733i −0.948136 0.317866i \(-0.897034\pi\)
0.948136 0.317866i \(-0.102966\pi\)
\(734\) 10995.0 6347.97i 0.552906 0.319220i
\(735\) 13776.0 7953.58i 0.691341 0.399146i
\(736\) 9477.78i 0.474668i
\(737\) −1852.50 3208.62i −0.0925885 0.160368i
\(738\) 14982.0 25949.6i 0.747283 1.29433i
\(739\) −14101.5 8141.50i −0.701938 0.405264i 0.106131 0.994352i \(-0.466154\pi\)
−0.808069 + 0.589088i \(0.799487\pi\)
\(740\) 2208.00 0.109686
\(741\) −27846.0 8038.45i −1.38050 0.398515i
\(742\) −33228.0 −1.64399
\(743\) 9358.50 + 5403.13i 0.462086 + 0.266786i 0.712921 0.701244i \(-0.247372\pi\)
−0.250835 + 0.968030i \(0.580705\pi\)
\(744\) 3528.00 6110.68i 0.173848 0.301113i
\(745\) 9036.00 + 15650.8i 0.444367 + 0.769666i
\(746\) 18605.7i 0.913140i
\(747\) −8118.00 + 4686.93i −0.397620 + 0.229566i
\(748\) −2106.00 + 1215.90i −0.102945 + 0.0594354i
\(749\) 5741.75i 0.280105i
\(750\) −9744.00 16877.1i −0.474401 0.821686i
\(751\) 6807.50 11790.9i 0.330771 0.572913i −0.651892 0.758312i \(-0.726024\pi\)
0.982663 + 0.185399i \(0.0593578\pi\)
\(752\) −23760.0 13717.8i −1.15218 0.665210i
\(753\) −31437.0 −1.52142
\(754\) −2691.00 10875.5i −0.129974 0.525284i
\(755\) 1200.00 0.0578443
\(756\) 2730.00 + 1576.17i 0.131335 + 0.0758262i
\(757\) −2775.50 + 4807.31i −0.133259 + 0.230812i −0.924931 0.380135i \(-0.875878\pi\)
0.791672 + 0.610947i \(0.209211\pi\)
\(758\) 19935.0 + 34528.4i 0.955240 + 1.65452i
\(759\) 8984.15i 0.429649i
\(760\) 14688.0 8480.12i 0.701039 0.404745i
\(761\) 8731.50 5041.13i 0.415922 0.240133i −0.277409 0.960752i \(-0.589476\pi\)
0.693331 + 0.720619i \(0.256142\pi\)
\(762\) 54389.9i 2.58574i
\(763\) −6864.00 11888.8i −0.325680 0.564093i
\(764\) −5682.00 + 9841.51i −0.269067 + 0.466039i
\(765\) −7128.00 4115.35i −0.336880 0.194498i
\(766\) −8382.00 −0.395371
\(767\) −214.500 866.891i −0.0100980