Properties

 Label 13.4.c.b.9.1 Level $13$ Weight $4$ Character 13.9 Analytic conductor $0.767$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [13,4,Mod(3,13)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(13, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("13.3");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 13.c (of order $$3$$, degree $$2$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.767024830075$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{17})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - x^{3} + 5x^{2} + 4x + 16$$ x^4 - x^3 + 5*x^2 + 4*x + 16 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

 Embedding label 9.1 Root $$-0.780776 - 1.35234i$$ of defining polynomial Character $$\chi$$ $$=$$ 13.9 Dual form 13.4.c.b.3.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.219224 - 0.379706i) q^{2} +(1.84233 - 3.19101i) q^{3} +(3.90388 + 6.76172i) q^{4} -17.8078 q^{5} +(-0.807764 - 1.39909i) q^{6} +(-2.71922 - 4.70983i) q^{7} +6.93087 q^{8} +(6.71165 + 11.6249i) q^{9} +O(q^{10})$$ $$q+(0.219224 - 0.379706i) q^{2} +(1.84233 - 3.19101i) q^{3} +(3.90388 + 6.76172i) q^{4} -17.8078 q^{5} +(-0.807764 - 1.39909i) q^{6} +(-2.71922 - 4.70983i) q^{7} +6.93087 q^{8} +(6.71165 + 11.6249i) q^{9} +(-3.90388 + 6.76172i) q^{10} +(11.2116 - 19.4191i) q^{11} +28.7689 q^{12} +(21.9730 - 41.4027i) q^{13} -2.38447 q^{14} +(-32.8078 + 56.8247i) q^{15} +(-29.7116 + 51.4621i) q^{16} +(-33.9924 - 58.8766i) q^{17} +5.88540 q^{18} +(40.4039 + 69.9816i) q^{19} +(-69.5194 - 120.411i) q^{20} -20.0388 q^{21} +(-4.91571 - 8.51427i) q^{22} +(-70.2656 + 121.704i) q^{23} +(12.7689 - 22.1165i) q^{24} +192.116 q^{25} +(-10.9039 - 17.4198i) q^{26} +148.946 q^{27} +(21.2311 - 36.7733i) q^{28} +(53.3466 - 92.3990i) q^{29} +(14.3845 + 24.9146i) q^{30} -276.155 q^{31} +(40.7505 + 70.5819i) q^{32} +(-41.3111 - 71.5529i) q^{33} -29.8078 q^{34} +(48.4233 + 83.8716i) q^{35} +(-52.4029 + 90.7646i) q^{36} +(2.14584 - 3.71670i) q^{37} +35.4299 q^{38} +(-91.6349 - 146.394i) q^{39} -123.423 q^{40} +(-113.884 + 197.254i) q^{41} +(-4.39298 + 7.60887i) q^{42} +(-13.7647 - 23.8411i) q^{43} +175.076 q^{44} +(-119.519 - 207.014i) q^{45} +(30.8078 + 53.3606i) q^{46} +318.617 q^{47} +(109.477 + 189.620i) q^{48} +(156.712 - 271.433i) q^{49} +(42.1165 - 72.9479i) q^{50} -250.501 q^{51} +(365.734 - 13.0560i) q^{52} -67.6562 q^{53} +(32.6525 - 56.5558i) q^{54} +(-199.654 + 345.811i) q^{55} +(-18.8466 - 32.6432i) q^{56} +297.749 q^{57} +(-23.3897 - 40.5121i) q^{58} +(145.557 + 252.113i) q^{59} -512.311 q^{60} +(-331.655 - 574.444i) q^{61} +(-60.5398 + 104.858i) q^{62} +(36.5009 - 63.2215i) q^{63} -439.652 q^{64} +(-391.290 + 737.290i) q^{65} -36.2255 q^{66} +(212.551 - 368.149i) q^{67} +(265.405 - 459.695i) q^{68} +(258.905 + 448.436i) q^{69} +42.4621 q^{70} +(76.4815 + 132.470i) q^{71} +(46.5175 + 80.5708i) q^{72} +117.268 q^{73} +(-0.940837 - 1.62958i) q^{74} +(353.942 - 613.045i) q^{75} +(-315.464 + 546.400i) q^{76} -121.948 q^{77} +(-75.6751 + 2.70146i) q^{78} +202.462 q^{79} +(529.098 - 916.425i) q^{80} +(93.1932 - 161.415i) q^{81} +(49.9323 + 86.4853i) q^{82} +336.155 q^{83} +(-78.2292 - 135.497i) q^{84} +(605.329 + 1048.46i) q^{85} -12.0702 q^{86} +(-196.564 - 340.459i) q^{87} +(77.7065 - 134.592i) q^{88} +(-359.097 + 621.974i) q^{89} -104.806 q^{90} +(-254.750 + 9.09407i) q^{91} -1097.23 q^{92} +(-508.769 + 881.214i) q^{93} +(69.8485 - 120.981i) q^{94} +(-719.503 - 1246.22i) q^{95} +300.303 q^{96} +(-379.684 - 657.632i) q^{97} +(-68.7098 - 119.009i) q^{98} +300.994 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 5 q^{2} - 5 q^{3} - 5 q^{4} - 30 q^{5} + 38 q^{6} - 15 q^{7} - 30 q^{8} - 35 q^{9}+O(q^{10})$$ 4 * q + 5 * q^2 - 5 * q^3 - 5 * q^4 - 30 * q^5 + 38 * q^6 - 15 * q^7 - 30 * q^8 - 35 * q^9 $$4 q + 5 q^{2} - 5 q^{3} - 5 q^{4} - 30 q^{5} + 38 q^{6} - 15 q^{7} - 30 q^{8} - 35 q^{9} + 5 q^{10} - 17 q^{11} + 280 q^{12} + 125 q^{13} - 92 q^{14} - 90 q^{15} - 57 q^{16} - 70 q^{17} - 430 q^{18} + 141 q^{19} - 175 q^{20} + 126 q^{21} + 170 q^{22} - 145 q^{23} + 216 q^{24} + 150 q^{25} - 23 q^{26} + 670 q^{27} - 80 q^{28} - 34 q^{29} + 140 q^{30} - 280 q^{31} - 105 q^{32} - 425 q^{33} - 78 q^{34} + 70 q^{35} - 725 q^{36} + 190 q^{37} + 620 q^{38} - 181 q^{39} - 370 q^{40} - 538 q^{41} + 370 q^{42} - 455 q^{43} + 1360 q^{44} - 375 q^{45} + 82 q^{46} + 120 q^{47} + 240 q^{48} + 565 q^{49} - 450 q^{50} - 466 q^{51} - 310 q^{52} + 1090 q^{53} + 914 q^{54} - 510 q^{55} + 172 q^{56} - 450 q^{57} + 595 q^{58} + 809 q^{59} - 400 q^{60} - 502 q^{61} + 500 q^{62} - 390 q^{63} - 2542 q^{64} - 555 q^{65} - 3196 q^{66} + 475 q^{67} + 505 q^{68} + 479 q^{69} - 160 q^{70} - 127 q^{71} + 1155 q^{72} + 1170 q^{73} - 849 q^{74} + 1725 q^{75} + 140 q^{76} + 510 q^{77} + 3070 q^{78} + 480 q^{79} + 1065 q^{80} - 122 q^{81} + 1515 q^{82} + 520 q^{83} - 1220 q^{84} + 1205 q^{85} - 3924 q^{86} - 1615 q^{87} + 1020 q^{88} - 921 q^{89} - 1450 q^{90} - 1287 q^{91} - 2080 q^{92} - 2200 q^{93} - 1040 q^{94} - 1270 q^{95} + 3840 q^{96} + 415 q^{97} - 1285 q^{98} + 4420 q^{99}+O(q^{100})$$ 4 * q + 5 * q^2 - 5 * q^3 - 5 * q^4 - 30 * q^5 + 38 * q^6 - 15 * q^7 - 30 * q^8 - 35 * q^9 + 5 * q^10 - 17 * q^11 + 280 * q^12 + 125 * q^13 - 92 * q^14 - 90 * q^15 - 57 * q^16 - 70 * q^17 - 430 * q^18 + 141 * q^19 - 175 * q^20 + 126 * q^21 + 170 * q^22 - 145 * q^23 + 216 * q^24 + 150 * q^25 - 23 * q^26 + 670 * q^27 - 80 * q^28 - 34 * q^29 + 140 * q^30 - 280 * q^31 - 105 * q^32 - 425 * q^33 - 78 * q^34 + 70 * q^35 - 725 * q^36 + 190 * q^37 + 620 * q^38 - 181 * q^39 - 370 * q^40 - 538 * q^41 + 370 * q^42 - 455 * q^43 + 1360 * q^44 - 375 * q^45 + 82 * q^46 + 120 * q^47 + 240 * q^48 + 565 * q^49 - 450 * q^50 - 466 * q^51 - 310 * q^52 + 1090 * q^53 + 914 * q^54 - 510 * q^55 + 172 * q^56 - 450 * q^57 + 595 * q^58 + 809 * q^59 - 400 * q^60 - 502 * q^61 + 500 * q^62 - 390 * q^63 - 2542 * q^64 - 555 * q^65 - 3196 * q^66 + 475 * q^67 + 505 * q^68 + 479 * q^69 - 160 * q^70 - 127 * q^71 + 1155 * q^72 + 1170 * q^73 - 849 * q^74 + 1725 * q^75 + 140 * q^76 + 510 * q^77 + 3070 * q^78 + 480 * q^79 + 1065 * q^80 - 122 * q^81 + 1515 * q^82 + 520 * q^83 - 1220 * q^84 + 1205 * q^85 - 3924 * q^86 - 1615 * q^87 + 1020 * q^88 - 921 * q^89 - 1450 * q^90 - 1287 * q^91 - 2080 * q^92 - 2200 * q^93 - 1040 * q^94 - 1270 * q^95 + 3840 * q^96 + 415 * q^97 - 1285 * q^98 + 4420 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/13\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.219224 0.379706i 0.0775072 0.134246i −0.824667 0.565619i $$-0.808637\pi$$
0.902174 + 0.431373i $$0.141971\pi$$
$$3$$ 1.84233 3.19101i 0.354556 0.614110i −0.632486 0.774572i $$-0.717965\pi$$
0.987042 + 0.160462i $$0.0512985\pi$$
$$4$$ 3.90388 + 6.76172i 0.487985 + 0.845215i
$$5$$ −17.8078 −1.59277 −0.796387 0.604787i $$-0.793258\pi$$
−0.796387 + 0.604787i $$0.793258\pi$$
$$6$$ −0.807764 1.39909i −0.0549614 0.0951959i
$$7$$ −2.71922 4.70983i −0.146824 0.254307i 0.783228 0.621735i $$-0.213572\pi$$
−0.930052 + 0.367428i $$0.880239\pi$$
$$8$$ 6.93087 0.306304
$$9$$ 6.71165 + 11.6249i 0.248579 + 0.430552i
$$10$$ −3.90388 + 6.76172i −0.123452 + 0.213824i
$$11$$ 11.2116 19.4191i 0.307313 0.532281i −0.670461 0.741945i $$-0.733904\pi$$
0.977774 + 0.209664i $$0.0672369\pi$$
$$12$$ 28.7689 0.692073
$$13$$ 21.9730 41.4027i 0.468786 0.883312i
$$14$$ −2.38447 −0.0455198
$$15$$ −32.8078 + 56.8247i −0.564729 + 0.978139i
$$16$$ −29.7116 + 51.4621i −0.464244 + 0.804095i
$$17$$ −33.9924 58.8766i −0.484963 0.839981i 0.514888 0.857258i $$-0.327834\pi$$
−0.999851 + 0.0172769i $$0.994500\pi$$
$$18$$ 5.88540 0.0770668
$$19$$ 40.4039 + 69.9816i 0.487857 + 0.844993i 0.999902 0.0139650i $$-0.00444535\pi$$
−0.512045 + 0.858958i $$0.671112\pi$$
$$20$$ −69.5194 120.411i −0.777251 1.34624i
$$21$$ −20.0388 −0.208230
$$22$$ −4.91571 8.51427i −0.0476379 0.0825113i
$$23$$ −70.2656 + 121.704i −0.637017 + 1.10335i 0.349067 + 0.937098i $$0.386499\pi$$
−0.986084 + 0.166248i $$0.946835\pi$$
$$24$$ 12.7689 22.1165i 0.108602 0.188104i
$$25$$ 192.116 1.53693
$$26$$ −10.9039 17.4198i −0.0822472 0.131396i
$$27$$ 148.946 1.06165
$$28$$ 21.2311 36.7733i 0.143296 0.248196i
$$29$$ 53.3466 92.3990i 0.341594 0.591657i −0.643135 0.765753i $$-0.722367\pi$$
0.984729 + 0.174095i $$0.0557001\pi$$
$$30$$ 14.3845 + 24.9146i 0.0875411 + 0.151626i
$$31$$ −276.155 −1.59997 −0.799983 0.600023i $$-0.795158\pi$$
−0.799983 + 0.600023i $$0.795158\pi$$
$$32$$ 40.7505 + 70.5819i 0.225117 + 0.389913i
$$33$$ −41.3111 71.5529i −0.217919 0.377447i
$$34$$ −29.8078 −0.150353
$$35$$ 48.4233 + 83.8716i 0.233858 + 0.405054i
$$36$$ −52.4029 + 90.7646i −0.242606 + 0.420206i
$$37$$ 2.14584 3.71670i 0.00953442 0.0165141i −0.861219 0.508234i $$-0.830298\pi$$
0.870753 + 0.491720i $$0.163632\pi$$
$$38$$ 35.4299 0.151250
$$39$$ −91.6349 146.394i −0.376239 0.601070i
$$40$$ −123.423 −0.487873
$$41$$ −113.884 + 197.254i −0.433799 + 0.751362i −0.997197 0.0748237i $$-0.976161\pi$$
0.563398 + 0.826186i $$0.309494\pi$$
$$42$$ −4.39298 + 7.60887i −0.0161393 + 0.0279541i
$$43$$ −13.7647 23.8411i −0.0488162 0.0845521i 0.840585 0.541680i $$-0.182212\pi$$
−0.889401 + 0.457128i $$0.848878\pi$$
$$44$$ 175.076 0.599856
$$45$$ −119.519 207.014i −0.395931 0.685773i
$$46$$ 30.8078 + 53.3606i 0.0987469 + 0.171035i
$$47$$ 318.617 0.988832 0.494416 0.869225i $$-0.335382\pi$$
0.494416 + 0.869225i $$0.335382\pi$$
$$48$$ 109.477 + 189.620i 0.329202 + 0.570194i
$$49$$ 156.712 271.433i 0.456885 0.791348i
$$50$$ 42.1165 72.9479i 0.119123 0.206328i
$$51$$ −250.501 −0.687787
$$52$$ 365.734 13.0560i 0.975349 0.0348181i
$$53$$ −67.6562 −0.175345 −0.0876726 0.996149i $$-0.527943\pi$$
−0.0876726 + 0.996149i $$0.527943\pi$$
$$54$$ 32.6525 56.5558i 0.0822859 0.142523i
$$55$$ −199.654 + 345.811i −0.489480 + 0.847804i
$$56$$ −18.8466 32.6432i −0.0449729 0.0778953i
$$57$$ 297.749 0.691892
$$58$$ −23.3897 40.5121i −0.0529519 0.0917155i
$$59$$ 145.557 + 252.113i 0.321186 + 0.556310i 0.980733 0.195353i $$-0.0625854\pi$$
−0.659547 + 0.751663i $$0.729252\pi$$
$$60$$ −512.311 −1.10232
$$61$$ −331.655 574.444i −0.696133 1.20574i −0.969797 0.243912i $$-0.921569\pi$$
0.273664 0.961825i $$-0.411764\pi$$
$$62$$ −60.5398 + 104.858i −0.124009 + 0.214790i
$$63$$ 36.5009 63.2215i 0.0729950 0.126431i
$$64$$ −439.652 −0.858696
$$65$$ −391.290 + 737.290i −0.746670 + 1.40692i
$$66$$ −36.2255 −0.0675613
$$67$$ 212.551 368.149i 0.387570 0.671291i −0.604552 0.796566i $$-0.706648\pi$$
0.992122 + 0.125275i $$0.0399812\pi$$
$$68$$ 265.405 459.695i 0.473310 0.819796i
$$69$$ 258.905 + 448.436i 0.451717 + 0.782397i
$$70$$ 42.4621 0.0725028
$$71$$ 76.4815 + 132.470i 0.127841 + 0.221427i 0.922840 0.385184i $$-0.125862\pi$$
−0.794999 + 0.606611i $$0.792529\pi$$
$$72$$ 46.5175 + 80.5708i 0.0761409 + 0.131880i
$$73$$ 117.268 0.188016 0.0940081 0.995571i $$-0.470032\pi$$
0.0940081 + 0.995571i $$0.470032\pi$$
$$74$$ −0.940837 1.62958i −0.00147797 0.00255993i
$$75$$ 353.942 613.045i 0.544929 0.943845i
$$76$$ −315.464 + 546.400i −0.476134 + 0.824689i
$$77$$ −121.948 −0.180484
$$78$$ −75.6751 + 2.70146i −0.109853 + 0.00392154i
$$79$$ 202.462 0.288339 0.144169 0.989553i $$-0.453949\pi$$
0.144169 + 0.989553i $$0.453949\pi$$
$$80$$ 529.098 916.425i 0.739437 1.28074i
$$81$$ 93.1932 161.415i 0.127837 0.221420i
$$82$$ 49.9323 + 86.4853i 0.0672452 + 0.116472i
$$83$$ 336.155 0.444552 0.222276 0.974984i $$-0.428651\pi$$
0.222276 + 0.974984i $$0.428651\pi$$
$$84$$ −78.2292 135.497i −0.101613 0.175999i
$$85$$ 605.329 + 1048.46i 0.772437 + 1.33790i
$$86$$ −12.0702 −0.0151344
$$87$$ −196.564 340.459i −0.242228 0.419552i
$$88$$ 77.7065 134.592i 0.0941311 0.163040i
$$89$$ −359.097 + 621.974i −0.427688 + 0.740777i −0.996667 0.0815748i $$-0.974005\pi$$
0.568979 + 0.822352i $$0.307338\pi$$
$$90$$ −104.806 −0.122750
$$91$$ −254.750 + 9.09407i −0.293462 + 0.0104760i
$$92$$ −1097.23 −1.24342
$$93$$ −508.769 + 881.214i −0.567278 + 0.982555i
$$94$$ 69.8485 120.981i 0.0766417 0.132747i
$$95$$ −719.503 1246.22i −0.777047 1.34588i
$$96$$ 300.303 0.319266
$$97$$ −379.684 657.632i −0.397434 0.688376i 0.595975 0.803003i $$-0.296766\pi$$
−0.993409 + 0.114628i $$0.963433\pi$$
$$98$$ −68.7098 119.009i −0.0708238 0.122670i
$$99$$ 300.994 0.305566
$$100$$ 750.000 + 1299.04i 0.750000 + 1.29904i
$$101$$ 174.348 301.980i 0.171766 0.297507i −0.767272 0.641322i $$-0.778386\pi$$
0.939037 + 0.343816i $$0.111720\pi$$
$$102$$ −54.9157 + 95.1168i −0.0533085 + 0.0923330i
$$103$$ −580.303 −0.555136 −0.277568 0.960706i $$-0.589528\pi$$
−0.277568 + 0.960706i $$0.589528\pi$$
$$104$$ 152.292 286.957i 0.143591 0.270562i
$$105$$ 356.847 0.331663
$$106$$ −14.8318 + 25.6895i −0.0135905 + 0.0235395i
$$107$$ −285.747 + 494.928i −0.258170 + 0.447163i −0.965752 0.259468i $$-0.916453\pi$$
0.707582 + 0.706631i $$0.249786\pi$$
$$108$$ 581.468 + 1007.13i 0.518072 + 0.897327i
$$109$$ 176.004 0.154661 0.0773307 0.997005i $$-0.475360\pi$$
0.0773307 + 0.997005i $$0.475360\pi$$
$$110$$ 87.5379 + 151.620i 0.0758765 + 0.131422i
$$111$$ −7.90668 13.6948i −0.00676098 0.0117104i
$$112$$ 323.170 0.272649
$$113$$ −632.441 1095.42i −0.526505 0.911933i −0.999523 0.0308807i $$-0.990169\pi$$
0.473018 0.881053i $$-0.343165\pi$$
$$114$$ 65.2736 113.057i 0.0536266 0.0928840i
$$115$$ 1251.27 2167.27i 1.01462 1.75738i
$$116$$ 833.035 0.666770
$$117$$ 628.778 22.4462i 0.496842 0.0177363i
$$118$$ 127.638 0.0995768
$$119$$ −184.866 + 320.197i −0.142409 + 0.246659i
$$120$$ −227.386 + 393.845i −0.172979 + 0.299608i
$$121$$ 414.098 + 717.239i 0.311118 + 0.538872i
$$122$$ −290.827 −0.215821
$$123$$ 419.625 + 726.812i 0.307613 + 0.532801i
$$124$$ −1078.08 1867.29i −0.780760 1.35232i
$$125$$ −1195.19 −0.855211
$$126$$ −16.0037 27.7193i −0.0113153 0.0195986i
$$127$$ −1302.05 + 2255.22i −0.909752 + 1.57574i −0.0953448 + 0.995444i $$0.530395\pi$$
−0.814408 + 0.580293i $$0.802938\pi$$
$$128$$ −422.386 + 731.594i −0.291672 + 0.505190i
$$129$$ −101.436 −0.0692323
$$130$$ 194.174 + 310.207i 0.131001 + 0.209284i
$$131$$ 2131.70 1.42174 0.710870 0.703324i $$-0.248302\pi$$
0.710870 + 0.703324i $$0.248302\pi$$
$$132$$ 322.547 558.668i 0.212683 0.368377i
$$133$$ 219.734 380.591i 0.143259 0.248131i
$$134$$ −93.1922 161.414i −0.0600790 0.104060i
$$135$$ −2652.40 −1.69098
$$136$$ −235.597 408.066i −0.148546 0.257290i
$$137$$ −343.992 595.812i −0.214520 0.371560i 0.738604 0.674140i $$-0.235485\pi$$
−0.953124 + 0.302580i $$0.902152\pi$$
$$138$$ 227.032 0.140045
$$139$$ 339.790 + 588.534i 0.207343 + 0.359128i 0.950877 0.309570i $$-0.100185\pi$$
−0.743534 + 0.668698i $$0.766852\pi$$
$$140$$ −378.078 + 654.850i −0.228239 + 0.395321i
$$141$$ 586.998 1016.71i 0.350597 0.607252i
$$142$$ 67.0662 0.0396343
$$143$$ −557.652 890.890i −0.326106 0.520979i
$$144$$ −797.656 −0.461607
$$145$$ −949.983 + 1645.42i −0.544082 + 0.942377i
$$146$$ 25.7079 44.5274i 0.0145726 0.0252405i
$$147$$ −577.429 1000.14i −0.323983 0.561155i
$$148$$ 33.5084 0.0186106
$$149$$ 987.731 + 1710.80i 0.543074 + 0.940632i 0.998725 + 0.0504739i $$0.0160732\pi$$
−0.455651 + 0.890159i $$0.650593\pi$$
$$150$$ −155.185 268.788i −0.0844719 0.146310i
$$151$$ 1803.24 0.971824 0.485912 0.874008i $$-0.338487\pi$$
0.485912 + 0.874008i $$0.338487\pi$$
$$152$$ 280.034 + 485.033i 0.149433 + 0.258825i
$$153$$ 456.290 790.318i 0.241104 0.417604i
$$154$$ −26.7339 + 46.3044i −0.0139888 + 0.0242293i
$$155$$ 4917.71 2.54839
$$156$$ 632.140 1191.11i 0.324434 0.611316i
$$157$$ −397.168 −0.201894 −0.100947 0.994892i $$-0.532187\pi$$
−0.100947 + 0.994892i $$0.532187\pi$$
$$158$$ 44.3845 76.8762i 0.0223483 0.0387085i
$$159$$ −124.645 + 215.892i −0.0621698 + 0.107681i
$$160$$ −725.675 1256.91i −0.358560 0.621044i
$$161$$ 764.272 0.374118
$$162$$ −40.8603 70.7721i −0.0198166 0.0343233i
$$163$$ −470.696 815.270i −0.226183 0.391760i 0.730491 0.682922i $$-0.239291\pi$$
−0.956674 + 0.291162i $$0.905958\pi$$
$$164$$ −1778.37 −0.846750
$$165$$ 735.658 + 1274.20i 0.347096 + 0.601189i
$$166$$ 73.6932 127.640i 0.0344560 0.0596796i
$$167$$ −1840.22 + 3187.35i −0.852696 + 1.47691i 0.0260704 + 0.999660i $$0.491701\pi$$
−0.878766 + 0.477252i $$0.841633\pi$$
$$168$$ −138.886 −0.0637817
$$169$$ −1231.37 1819.49i −0.560479 0.828168i
$$170$$ 530.810 0.239478
$$171$$ −542.353 + 939.383i −0.242543 + 0.420096i
$$172$$ 107.471 186.146i 0.0476431 0.0825203i
$$173$$ −711.387 1232.16i −0.312634 0.541499i 0.666297 0.745686i $$-0.267878\pi$$
−0.978932 + 0.204187i $$0.934545\pi$$
$$174$$ −172.366 −0.0750978
$$175$$ −522.408 904.837i −0.225659 0.390853i
$$176$$ 666.233 + 1153.95i 0.285336 + 0.494217i
$$177$$ 1072.66 0.455514
$$178$$ 157.445 + 272.703i 0.0662978 + 0.114831i
$$179$$ −583.946 + 1011.42i −0.243833 + 0.422331i −0.961803 0.273743i $$-0.911738\pi$$
0.717970 + 0.696074i $$0.245072\pi$$
$$180$$ 933.179 1616.31i 0.386417 0.669294i
$$181$$ −1133.96 −0.465673 −0.232836 0.972516i $$-0.574801\pi$$
−0.232836 + 0.972516i $$0.574801\pi$$
$$182$$ −52.3940 + 98.7237i −0.0213390 + 0.0402082i
$$183$$ −2444.07 −0.987274
$$184$$ −487.002 + 843.512i −0.195121 + 0.337959i
$$185$$ −38.2126 + 66.1861i −0.0151862 + 0.0263032i
$$186$$ 223.068 + 386.366i 0.0879364 + 0.152310i
$$187$$ −1524.44 −0.596141
$$188$$ 1243.84 + 2154.40i 0.482536 + 0.835776i
$$189$$ −405.018 701.511i −0.155877 0.269986i
$$190$$ −630.928 −0.240907
$$191$$ −1341.06 2322.78i −0.508040 0.879952i −0.999957 0.00930919i $$-0.997037\pi$$
0.491916 0.870642i $$-0.336297\pi$$
$$192$$ −809.985 + 1402.93i −0.304456 + 0.527334i
$$193$$ 985.333 1706.65i 0.367491 0.636514i −0.621681 0.783270i $$-0.713550\pi$$
0.989173 + 0.146757i $$0.0468834\pi$$
$$194$$ −332.943 −0.123216
$$195$$ 1631.81 + 2606.94i 0.599265 + 0.957369i
$$196$$ 2447.14 0.891813
$$197$$ 2008.02 3478.00i 0.726222 1.25785i −0.232247 0.972657i $$-0.574608\pi$$
0.958469 0.285197i $$-0.0920590\pi$$
$$198$$ 65.9851 114.290i 0.0236836 0.0410212i
$$199$$ 2113.03 + 3659.87i 0.752707 + 1.30373i 0.946506 + 0.322685i $$0.104585\pi$$
−0.193800 + 0.981041i $$0.562081\pi$$
$$200$$ 1331.53 0.470768
$$201$$ −783.177 1356.50i −0.274831 0.476021i
$$202$$ −76.4426 132.402i −0.0266261 0.0461178i
$$203$$ −580.245 −0.200617
$$204$$ −977.926 1693.82i −0.335630 0.581328i
$$205$$ 2028.03 3512.65i 0.690944 1.19675i
$$206$$ −127.216 + 220.345i −0.0430270 + 0.0745250i
$$207$$ −1886.39 −0.633398
$$208$$ 1477.82 + 2360.92i 0.492635 + 0.787021i
$$209$$ 1811.98 0.599699
$$210$$ 78.2292 135.497i 0.0257063 0.0445247i
$$211$$ −682.334 + 1181.84i −0.222625 + 0.385597i −0.955604 0.294654i $$-0.904796\pi$$
0.732980 + 0.680251i $$0.238129\pi$$
$$212$$ −264.122 457.473i −0.0855659 0.148204i
$$213$$ 563.617 0.181307
$$214$$ 125.285 + 217.000i 0.0400201 + 0.0693168i
$$215$$ 245.118 + 424.557i 0.0777532 + 0.134672i
$$216$$ 1032.33 0.325189
$$217$$ 750.928 + 1300.65i 0.234914 + 0.406883i
$$218$$ 38.5842 66.8297i 0.0119874 0.0207628i
$$219$$ 216.046 374.203i 0.0666624 0.115463i
$$220$$ −3117.71 −0.955436
$$221$$ −3184.57 + 113.683i −0.969309 + 0.0346025i
$$222$$ −6.93332 −0.00209610
$$223$$ 529.734 917.527i 0.159075 0.275525i −0.775461 0.631396i $$-0.782482\pi$$
0.934535 + 0.355871i $$0.115816\pi$$
$$224$$ 221.619 383.856i 0.0661052 0.114498i
$$225$$ 1289.42 + 2233.34i 0.382050 + 0.661729i
$$226$$ −554.584 −0.163232
$$227$$ −1732.10 3000.08i −0.506446 0.877190i −0.999972 0.00745930i $$-0.997626\pi$$
0.493526 0.869731i $$-0.335708\pi$$
$$228$$ 1162.38 + 2013.30i 0.337633 + 0.584797i
$$229$$ −2324.64 −0.670815 −0.335407 0.942073i $$-0.608874\pi$$
−0.335407 + 0.942073i $$0.608874\pi$$
$$230$$ −548.617 950.233i −0.157282 0.272420i
$$231$$ −224.668 + 389.137i −0.0639917 + 0.110837i
$$232$$ 369.738 640.405i 0.104631 0.181227i
$$233$$ −3731.01 −1.04904 −0.524521 0.851398i $$-0.675755\pi$$
−0.524521 + 0.851398i $$0.675755\pi$$
$$234$$ 129.320 243.672i 0.0361279 0.0680741i
$$235$$ −5673.86 −1.57499
$$236$$ −1136.48 + 1968.44i −0.313468 + 0.542942i
$$237$$ 373.002 646.058i 0.102232 0.177072i
$$238$$ 81.0540 + 140.390i 0.0220754 + 0.0382357i
$$239$$ 6044.47 1.63592 0.817958 0.575278i $$-0.195106\pi$$
0.817958 + 0.575278i $$0.195106\pi$$
$$240$$ −1949.55 3376.71i −0.524344 0.908191i
$$241$$ 2586.98 + 4480.78i 0.691461 + 1.19765i 0.971359 + 0.237616i $$0.0763659\pi$$
−0.279898 + 0.960030i $$0.590301\pi$$
$$242$$ 363.120 0.0964556
$$243$$ 1667.39 + 2888.00i 0.440176 + 0.762408i
$$244$$ 2589.49 4485.12i 0.679405 1.17676i
$$245$$ −2790.68 + 4833.61i −0.727715 + 1.26044i
$$246$$ 367.967 0.0953688
$$247$$ 3785.22 135.125i 0.975093 0.0348090i
$$248$$ −1914.00 −0.490076
$$249$$ 619.309 1072.67i 0.157619 0.273004i
$$250$$ −262.015 + 453.823i −0.0662851 + 0.114809i
$$251$$ −2810.37 4867.70i −0.706728 1.22409i −0.966064 0.258301i $$-0.916837\pi$$
0.259337 0.965787i $$-0.416496\pi$$
$$252$$ 569.981 0.142482
$$253$$ 1575.59 + 2729.00i 0.391527 + 0.678144i
$$254$$ 570.882 + 988.796i 0.141025 + 0.244262i
$$255$$ 4460.86 1.09549
$$256$$ −1573.42 2725.24i −0.384135 0.665341i
$$257$$ 837.070 1449.85i 0.203171 0.351903i −0.746377 0.665523i $$-0.768209\pi$$
0.949549 + 0.313620i $$0.101542\pi$$
$$258$$ −22.2372 + 38.5160i −0.00536601 + 0.00929420i
$$259$$ −23.3401 −0.00559954
$$260$$ −6512.90 + 232.498i −1.55351 + 0.0554574i
$$261$$ 1432.17 0.339653
$$262$$ 467.320 809.422i 0.110195 0.190864i
$$263$$ 3154.59 5463.91i 0.739622 1.28106i −0.213044 0.977043i $$-0.568338\pi$$
0.952666 0.304020i $$-0.0983289\pi$$
$$264$$ −286.322 495.924i −0.0667496 0.115614i
$$265$$ 1204.81 0.279285
$$266$$ −96.3419 166.869i −0.0222072 0.0384639i
$$267$$ 1323.15 + 2291.76i 0.303279 + 0.525294i
$$268$$ 3319.09 0.756514
$$269$$ 1241.37 + 2150.11i 0.281366 + 0.487340i 0.971721 0.236131i $$-0.0758793\pi$$
−0.690356 + 0.723470i $$0.742546\pi$$
$$270$$ −581.468 + 1007.13i −0.131063 + 0.227008i
$$271$$ −1417.86 + 2455.81i −0.317819 + 0.550478i −0.980033 0.198837i $$-0.936284\pi$$
0.662214 + 0.749315i $$0.269617\pi$$
$$272$$ 4039.88 0.900566
$$273$$ −440.313 + 829.662i −0.0976153 + 0.183932i
$$274$$ −301.645 −0.0665075
$$275$$ 2153.94 3730.74i 0.472318 0.818080i
$$276$$ −2021.47 + 3501.28i −0.440863 + 0.763596i
$$277$$ 1918.76 + 3323.38i 0.416198 + 0.720876i 0.995553 0.0941989i $$-0.0300290\pi$$
−0.579355 + 0.815075i $$0.696696\pi$$
$$278$$ 297.960 0.0642822
$$279$$ −1853.46 3210.28i −0.397719 0.688869i
$$280$$ 335.616 + 581.303i 0.0716317 + 0.124070i
$$281$$ −9122.13 −1.93659 −0.968293 0.249819i $$-0.919629\pi$$
−0.968293 + 0.249819i $$0.919629\pi$$
$$282$$ −257.368 445.774i −0.0543476 0.0941328i
$$283$$ −1063.92 + 1842.77i −0.223476 + 0.387072i −0.955861 0.293819i $$-0.905074\pi$$
0.732385 + 0.680891i $$0.238407\pi$$
$$284$$ −597.150 + 1034.29i −0.124769 + 0.216106i
$$285$$ −5302.24 −1.10203
$$286$$ −460.527 + 16.4399i −0.0952152 + 0.00339900i
$$287$$ 1238.71 0.254769
$$288$$ −547.005 + 947.441i −0.111919 + 0.193849i
$$289$$ 145.530 252.066i 0.0296215 0.0513059i
$$290$$ 416.518 + 721.430i 0.0843405 + 0.146082i
$$291$$ −2798.01 −0.563651
$$292$$ 457.800 + 792.934i 0.0917491 + 0.158914i
$$293$$ −4137.38 7166.16i −0.824944 1.42884i −0.901962 0.431815i $$-0.857873\pi$$
0.0770183 0.997030i $$-0.475460\pi$$
$$294$$ −506.344 −0.100444
$$295$$ −2592.05 4489.56i −0.511576 0.886076i
$$296$$ 14.8725 25.7600i 0.00292043 0.00505834i
$$297$$ 1669.93 2892.40i 0.326260 0.565099i
$$298$$ 866.136 0.168369
$$299$$ 3494.92 + 5583.38i 0.675974 + 1.07992i
$$300$$ 5526.99 1.06367
$$301$$ −74.8585 + 129.659i −0.0143348 + 0.0248286i
$$302$$ 395.312 684.701i 0.0753234 0.130464i
$$303$$ −642.414 1112.69i −0.121801 0.210966i
$$304$$ −4801.86 −0.905940
$$305$$ 5906.04 + 10229.6i 1.10878 + 1.92047i
$$306$$ −200.059 346.513i −0.0373746 0.0647347i
$$307$$ −3610.49 −0.671211 −0.335605 0.942003i $$-0.608941\pi$$
−0.335605 + 0.942003i $$0.608941\pi$$
$$308$$ −476.070 824.578i −0.0880734 0.152548i
$$309$$ −1069.11 + 1851.75i −0.196827 + 0.340914i
$$310$$ 1078.08 1867.29i 0.197518 0.342112i
$$311$$ 3331.06 0.607354 0.303677 0.952775i $$-0.401786\pi$$
0.303677 + 0.952775i $$0.401786\pi$$
$$312$$ −635.110 1014.63i −0.115244 0.184110i
$$313$$ −358.125 −0.0646724 −0.0323362 0.999477i $$-0.510295\pi$$
−0.0323362 + 0.999477i $$0.510295\pi$$
$$314$$ −87.0685 + 150.807i −0.0156483 + 0.0271036i
$$315$$ −650.000 + 1125.83i −0.116265 + 0.201376i
$$316$$ 790.388 + 1368.99i 0.140705 + 0.243708i
$$317$$ 3047.46 0.539944 0.269972 0.962868i $$-0.412986\pi$$
0.269972 + 0.962868i $$0.412986\pi$$
$$318$$ 54.6503 + 94.6570i 0.00963721 + 0.0166921i
$$319$$ −1196.21 2071.89i −0.209952 0.363647i
$$320$$ 7829.23 1.36771
$$321$$ 1052.88 + 1823.64i 0.183072 + 0.317089i
$$322$$ 167.546 290.199i 0.0289969 0.0502241i
$$323$$ 2746.85 4757.69i 0.473185 0.819581i
$$324$$ 1455.26 0.249530
$$325$$ 4221.38 7954.15i 0.720492 1.35759i
$$326$$ −412.751 −0.0701232
$$327$$ 324.257 561.629i 0.0548362 0.0949791i
$$328$$ −789.318 + 1367.14i −0.132874 + 0.230145i
$$329$$ −866.392 1500.63i −0.145185 0.251467i
$$330$$ 645.094 0.107610
$$331$$ −3847.39 6663.87i −0.638887 1.10658i −0.985677 0.168641i $$-0.946062\pi$$
0.346791 0.937942i $$-0.387271\pi$$
$$332$$ 1312.31 + 2272.99i 0.216935 + 0.375742i
$$333$$ 57.6084 0.00948025
$$334$$ 806.838 + 1397.48i 0.132180 + 0.228943i
$$335$$ −3785.05 + 6555.90i −0.617312 + 1.06922i
$$336$$ 595.386 1031.24i 0.0966696 0.167437i
$$337$$ 4712.21 0.761693 0.380846 0.924638i $$-0.375633\pi$$
0.380846 + 0.924638i $$0.375633\pi$$
$$338$$ −960.817 + 68.6862i −0.154620 + 0.0110534i
$$339$$ −4660.66 −0.746703
$$340$$ −4726.27 + 8186.13i −0.753876 + 1.30575i
$$341$$ −3096.16 + 5362.70i −0.491690 + 0.851632i
$$342$$ 237.793 + 411.870i 0.0375976 + 0.0651210i
$$343$$ −3569.92 −0.561976
$$344$$ −95.4013 165.240i −0.0149526 0.0258986i
$$345$$ −4610.52 7985.65i −0.719484 1.24618i
$$346$$ −623.811 −0.0969257
$$347$$ 2630.99 + 4557.01i 0.407029 + 0.704995i 0.994555 0.104210i $$-0.0332315\pi$$
−0.587526 + 0.809205i $$0.699898\pi$$
$$348$$ 1534.72 2658.22i 0.236408 0.409470i
$$349$$ −25.1672 + 43.5909i −0.00386009 + 0.00668587i −0.867949 0.496653i $$-0.834562\pi$$
0.864089 + 0.503339i $$0.167895\pi$$
$$350$$ −458.096 −0.0699608
$$351$$ 3272.79 6166.77i 0.497689 0.937772i
$$352$$ 1827.52 0.276725
$$353$$ −4528.82 + 7844.14i −0.682846 + 1.18272i 0.291263 + 0.956643i $$0.405925\pi$$
−0.974109 + 0.226081i $$0.927409\pi$$
$$354$$ 235.152 407.295i 0.0353056 0.0611511i
$$355$$ −1361.96 2358.99i −0.203621 0.352683i
$$356$$ −5607.49 −0.834821
$$357$$ 681.168 + 1179.82i 0.100984 + 0.174909i
$$358$$ 256.029 + 443.456i 0.0377977 + 0.0654675i
$$359$$ 7177.86 1.05525 0.527623 0.849479i $$-0.323083\pi$$
0.527623 + 0.849479i $$0.323083\pi$$
$$360$$ −828.373 1434.78i −0.121275 0.210055i
$$361$$ 164.553 285.014i 0.0239908 0.0415532i
$$362$$ −248.591 + 430.573i −0.0360930 + 0.0625150i
$$363$$ 3051.62 0.441235
$$364$$ −1056.00 1687.04i −0.152059 0.242926i
$$365$$ −2088.28 −0.299467
$$366$$ −535.798 + 928.030i −0.0765209 + 0.132538i
$$367$$ −2002.07 + 3467.69i −0.284761 + 0.493221i −0.972551 0.232689i $$-0.925248\pi$$
0.687790 + 0.725910i $$0.258581\pi$$
$$368$$ −4175.41 7232.03i −0.591463 1.02444i
$$369$$ −3057.41 −0.431334
$$370$$ 16.7542 + 29.0191i 0.00235408 + 0.00407738i
$$371$$ 183.972 + 318.649i 0.0257449 + 0.0445915i
$$372$$ −7944.70 −1.10729
$$373$$ 5007.09 + 8672.53i 0.695060 + 1.20388i 0.970161 + 0.242464i $$0.0779555\pi$$
−0.275101 + 0.961415i $$0.588711\pi$$
$$374$$ −334.194 + 578.841i −0.0462053 + 0.0800299i
$$375$$ −2201.94 + 3813.87i −0.303221 + 0.525194i
$$376$$ 2208.30 0.302883
$$377$$ −2653.39 4238.98i −0.362484 0.579094i
$$378$$ −355.158 −0.0483263
$$379$$ 4084.56 7074.66i 0.553587 0.958842i −0.444425 0.895816i $$-0.646592\pi$$
0.998012 0.0630252i $$-0.0200749\pi$$
$$380$$ 5617.71 9730.16i 0.758375 1.31354i
$$381$$ 4797.62 + 8309.73i 0.645117 + 1.11738i
$$382$$ −1175.97 −0.157507
$$383$$ 3655.12 + 6330.86i 0.487645 + 0.844626i 0.999899 0.0142079i $$-0.00452267\pi$$
−0.512254 + 0.858834i $$0.671189\pi$$
$$384$$ 1556.35 + 2695.67i 0.206828 + 0.358237i
$$385$$ 2171.62 0.287470
$$386$$ −432.017 748.275i −0.0569665 0.0986689i
$$387$$ 184.767 320.027i 0.0242694 0.0420358i
$$388$$ 2964.48 5134.64i 0.387884 0.671834i
$$389$$ 8785.47 1.14509 0.572546 0.819872i $$-0.305956\pi$$
0.572546 + 0.819872i $$0.305956\pi$$
$$390$$ 1347.60 48.1069i 0.174971 0.00624612i
$$391$$ 9553.99 1.23572
$$392$$ 1086.15 1881.26i 0.139946 0.242393i
$$393$$ 3927.30 6802.29i 0.504087 0.873104i
$$394$$ −880.412 1524.92i −0.112575 0.194986i
$$395$$ −3605.40 −0.459259
$$396$$ 1175.05 + 2035.24i 0.149112 + 0.258269i
$$397$$ −5633.40 9757.33i −0.712171 1.23352i −0.964040 0.265756i $$-0.914379\pi$$
0.251869 0.967761i $$-0.418955\pi$$
$$398$$ 1852.90 0.233361
$$399$$ −809.646 1402.35i −0.101586 0.175953i
$$400$$ −5708.10 + 9886.71i −0.713512 + 1.23584i
$$401$$ −788.117 + 1365.06i −0.0981464 + 0.169995i −0.910917 0.412589i $$-0.864625\pi$$
0.812771 + 0.582583i $$0.197958\pi$$
$$402$$ −686.763 −0.0852055
$$403$$ −6067.96 + 11433.6i −0.750042 + 1.41327i
$$404$$ 2722.54 0.335276
$$405$$ −1659.56 + 2874.45i −0.203616 + 0.352672i
$$406$$ −127.203 + 220.323i −0.0155493 + 0.0269321i
$$407$$ −48.1168 83.3407i −0.00586010 0.0101500i
$$408$$ −1736.19 −0.210672
$$409$$ −3377.89 5850.68i −0.408377 0.707329i 0.586331 0.810071i $$-0.300572\pi$$
−0.994708 + 0.102742i $$0.967238\pi$$
$$410$$ −889.183 1540.11i −0.107106 0.185514i
$$411$$ −2534.99 −0.304238
$$412$$ −2265.43 3923.85i −0.270898 0.469209i
$$413$$ 791.606 1371.10i 0.0943157 0.163360i
$$414$$ −413.542 + 716.275i −0.0490929 + 0.0850314i
$$415$$ −5986.17 −0.708072
$$416$$ 3817.69 136.284i 0.449947 0.0160622i
$$417$$ 2504.02 0.294059
$$418$$ 397.228 688.019i 0.0464810 0.0805074i
$$419$$ −5378.09 + 9315.13i −0.627057 + 1.08610i 0.361082 + 0.932534i $$0.382408\pi$$
−0.988139 + 0.153561i $$0.950926\pi$$
$$420$$ 1393.09 + 2412.90i 0.161847 + 0.280327i
$$421$$ 7886.03 0.912925 0.456463 0.889743i $$-0.349116\pi$$
0.456463 + 0.889743i $$0.349116\pi$$
$$422$$ 299.167 + 518.173i 0.0345100 + 0.0597731i
$$423$$ 2138.45 + 3703.90i 0.245803 + 0.425744i
$$424$$ −468.916 −0.0537089
$$425$$ −6530.50 11311.2i −0.745355 1.29099i
$$426$$ 123.558 214.009i 0.0140526 0.0243398i
$$427$$ −1803.69 + 3124.08i −0.204418 + 0.354063i
$$428$$ −4462.08 −0.503932
$$429$$ −3870.22 + 138.159i −0.435561 + 0.0155487i
$$430$$ 214.943 0.0241057
$$431$$ 7042.31 12197.6i 0.787044 1.36320i −0.140726 0.990049i $$-0.544944\pi$$
0.927770 0.373152i $$-0.121723\pi$$
$$432$$ −4425.43 + 7665.07i −0.492867 + 0.853671i
$$433$$ −932.072 1614.40i −0.103447 0.179175i 0.809656 0.586905i $$-0.199654\pi$$
−0.913103 + 0.407730i $$0.866321\pi$$
$$434$$ 658.485 0.0728301
$$435$$ 3500.36 + 6062.81i 0.385815 + 0.668252i
$$436$$ 687.098 + 1190.09i 0.0754725 + 0.130722i
$$437$$ −11356.0 −1.24309
$$438$$ −94.7249 164.068i −0.0103336 0.0178984i
$$439$$ −3077.24 + 5329.94i −0.334553 + 0.579463i −0.983399 0.181457i $$-0.941919\pi$$
0.648846 + 0.760920i $$0.275252\pi$$
$$440$$ −1383.78 + 2396.77i −0.149930 + 0.259686i
$$441$$ 4207.17 0.454289
$$442$$ −654.966 + 1234.12i −0.0704832 + 0.132808i
$$443$$ −14539.3 −1.55933 −0.779663 0.626200i $$-0.784609\pi$$
−0.779663 + 0.626200i $$0.784609\pi$$
$$444$$ 61.7335 106.926i 0.00659852 0.0114290i
$$445$$ 6394.72 11076.0i 0.681210 1.17989i
$$446$$ −232.261 402.287i −0.0246589 0.0427104i
$$447$$ 7278.90 0.770202
$$448$$ 1195.51 + 2070.69i 0.126077 + 0.218373i
$$449$$ 3521.93 + 6100.17i 0.370179 + 0.641169i 0.989593 0.143896i $$-0.0459630\pi$$
−0.619414 + 0.785065i $$0.712630\pi$$
$$450$$ 1130.68 0.118446
$$451$$ 2553.66 + 4423.08i 0.266624 + 0.461806i
$$452$$ 4937.95 8552.78i 0.513853 0.890020i
$$453$$ 3322.16 5754.15i 0.344567 0.596807i
$$454$$ −1518.87 −0.157013
$$455$$ 4536.52 161.945i 0.467418 0.0166859i
$$456$$ 2063.66 0.211929
$$457$$ −7049.43 + 12210.0i −0.721572 + 1.24980i 0.238798 + 0.971069i $$0.423247\pi$$
−0.960370 + 0.278730i $$0.910087\pi$$
$$458$$ −509.616 + 882.681i −0.0519930 + 0.0900545i
$$459$$ −5063.04 8769.44i −0.514863 0.891770i
$$460$$ 19539.3 1.98049
$$461$$ −7224.85 12513.8i −0.729924 1.26426i −0.956915 0.290368i $$-0.906222\pi$$
0.226991 0.973897i $$-0.427111\pi$$
$$462$$ 98.5051 + 170.616i 0.00991964 + 0.0171813i
$$463$$ 15806.5 1.58659 0.793293 0.608840i $$-0.208365\pi$$
0.793293 + 0.608840i $$0.208365\pi$$
$$464$$ 3170.03 + 5490.65i 0.317166 + 0.549347i
$$465$$ 9060.04 15692.4i 0.903547 1.56499i
$$466$$ −817.926 + 1416.69i −0.0813083 + 0.140830i
$$467$$ −15071.3 −1.49340 −0.746699 0.665162i $$-0.768362\pi$$
−0.746699 + 0.665162i $$0.768362\pi$$
$$468$$ 2606.45 + 4164.00i 0.257443 + 0.411284i
$$469$$ −2311.89 −0.227619
$$470$$ −1243.84 + 2154.40i −0.122073 + 0.211437i
$$471$$ −731.713 + 1267.36i −0.0715830 + 0.123985i
$$472$$ 1008.84 + 1747.36i 0.0983804 + 0.170400i
$$473$$ −617.299 −0.0600073
$$474$$ −163.542 283.262i −0.0158475 0.0274487i
$$475$$ 7762.25 + 13444.6i 0.749803 + 1.29870i
$$476$$ −2886.78 −0.277973
$$477$$ −454.085 786.498i −0.0435872 0.0754953i
$$478$$ 1325.09 2295.12i 0.126795 0.219616i
$$479$$ 196.272 339.954i 0.0187222 0.0324277i −0.856513 0.516126i $$-0.827374\pi$$
0.875235 + 0.483698i $$0.160707\pi$$
$$480$$ −5347.73 −0.508519
$$481$$ −106.731 170.511i −0.0101175 0.0161634i
$$482$$ 2268.51 0.214373
$$483$$ 1408.04 2438.80i 0.132646 0.229750i
$$484$$ −3233.18 + 5600.03i −0.303642 + 0.525923i
$$485$$ 6761.33 + 11711.0i 0.633023 + 1.09643i
$$486$$ 1462.12 0.136467
$$487$$ −4748.94 8225.41i −0.441879 0.765357i 0.555950 0.831216i $$-0.312355\pi$$
−0.997829 + 0.0658588i $$0.979021\pi$$
$$488$$ −2298.66 3981.40i −0.213228 0.369322i
$$489$$ −3468.71 −0.320778
$$490$$ 1223.57 + 2119.28i 0.112806 + 0.195386i
$$491$$ 946.912 1640.10i 0.0870337 0.150747i −0.819222 0.573476i $$-0.805595\pi$$
0.906256 + 0.422729i $$0.138928\pi$$
$$492$$ −3276.34 + 5674.78i −0.300221 + 0.519998i
$$493$$ −7253.52 −0.662641
$$494$$ 778.502 1466.90i 0.0709038 0.133601i
$$495$$ −5360.04 −0.486699
$$496$$ 8205.03 14211.5i 0.742775 1.28652i
$$497$$ 415.941 720.430i 0.0375402 0.0650216i
$$498$$ −271.534 470.311i −0.0244332 0.0423196i
$$499$$ −13370.1 −1.19945 −0.599727 0.800205i $$-0.704724\pi$$
−0.599727 + 0.800205i $$0.704724\pi$$
$$500$$ −4665.90 8081.57i −0.417330 0.722838i
$$501$$ 6780.57 + 11744.3i 0.604658 + 1.04730i
$$502$$ −2464.39 −0.219106
$$503$$ −2777.36 4810.52i −0.246195 0.426423i 0.716272 0.697822i $$-0.245847\pi$$
−0.962467 + 0.271399i $$0.912514\pi$$
$$504$$ 252.983 438.180i 0.0223587 0.0387263i
$$505$$ −3104.76 + 5377.60i −0.273584 + 0.473861i
$$506$$ 1381.62 0.121385
$$507$$ −8074.59 + 577.231i −0.707308 + 0.0505635i
$$508$$ −20332.3 −1.77578
$$509$$ −1098.78 + 1903.13i −0.0956824 + 0.165727i −0.909893 0.414843i $$-0.863837\pi$$
0.814211 + 0.580569i $$0.197170\pi$$
$$510$$ 977.926 1693.82i 0.0849084 0.147066i
$$511$$ −318.878 552.313i −0.0276053 0.0478139i
$$512$$ −8137.89 −0.702437
$$513$$ 6018.00 + 10423.5i 0.517936 + 0.897091i
$$514$$ −367.011 635.682i −0.0314945 0.0545500i
$$515$$ 10333.9 0.884206
$$516$$ −395.996 685.884i −0.0337844 0.0585162i
$$517$$ 3572.23 6187.28i 0.303881 0.526337i
$$518$$ −5.11669 + 8.86237i −0.000434005 + 0.000751718i
$$519$$ −5242.44 −0.443386
$$520$$ −2711.98 + 5110.06i −0.228708 + 0.430944i
$$521$$ 17005.2 1.42997 0.714983 0.699142i $$-0.246435\pi$$
0.714983 + 0.699142i $$0.246435\pi$$
$$522$$ 313.966 543.805i 0.0263255 0.0455972i
$$523$$ 7243.11 12545.4i 0.605581 1.04890i −0.386378 0.922341i $$-0.626274\pi$$
0.991959 0.126557i $$-0.0403928\pi$$
$$524$$ 8321.92 + 14414.0i 0.693788 + 1.20168i
$$525$$ −3849.79 −0.320035
$$526$$ −1383.12 2395.64i −0.114652 0.198583i
$$527$$ 9387.19 + 16259.1i 0.775925 + 1.34394i
$$528$$ 4909.68 0.404671
$$529$$ −3791.02 6566.23i −0.311582 0.539675i
$$530$$ 264.122 457.473i 0.0216466 0.0374931i
$$531$$ −1953.86 + 3384.18i −0.159680 + 0.276574i
$$532$$ 3431.27 0.279632
$$533$$ 5664.46 + 9049.39i 0.460328 + 0.735408i
$$534$$ 1160.26 0.0940252
$$535$$ 5088.51 8813.56i 0.411206 0.712230i
$$536$$ 1473.16 2551.59i 0.118714 0.205619i
$$537$$ 2151.64 + 3726.75i 0.172905 + 0.299481i
$$538$$ 1088.55 0.0872315
$$539$$ −3513.99 6086.41i −0.280813 0.486383i
$$540$$ −10354.6 17934.8i −0.825172 1.42924i
$$541$$ −15266.7 −1.21325 −0.606623 0.794990i $$-0.707476\pi$$
−0.606623 + 0.794990i $$0.707476\pi$$
$$542$$ 621.657 + 1076.74i 0.0492665 + 0.0853321i
$$543$$ −2089.13 + 3618.48i −0.165107 + 0.285974i
$$544$$ 2770.41 4798.50i 0.218347 0.378187i
$$545$$ −3134.23 −0.246341
$$546$$ 218.501 + 349.071i 0.0171263 + 0.0273606i
$$547$$ 15260.5 1.19286 0.596430 0.802665i $$-0.296586\pi$$
0.596430 + 0.802665i $$0.296586\pi$$
$$548$$ 2685.81 4651.96i 0.209365 0.362631i
$$549$$ 4451.91 7710.93i 0.346089 0.599443i
$$550$$ −944.390 1635.73i −0.0732162 0.126814i
$$551$$ 8621.64 0.666595
$$552$$ 1794.44 + 3108.05i 0.138363 + 0.239651i
$$553$$ −550.540 953.563i −0.0423351 0.0733266i
$$554$$ 1682.55 0.129033
$$555$$ 140.800 + 243.873i 0.0107687 + 0.0186520i
$$556$$ −2653.00 + 4595.13i −0.202360 + 0.350498i
$$557$$ 5221.05 9043.12i 0.397169 0.687916i −0.596207 0.802831i $$-0.703326\pi$$
0.993375 + 0.114915i $$0.0366595\pi$$
$$558$$ −1625.29 −0.123304
$$559$$ −1289.54 + 46.0341i −0.0975702 + 0.00348307i
$$560$$ −5754.94 −0.434269
$$561$$ −2808.53 + 4864.51i −0.211366 + 0.366096i
$$562$$ −1999.79 + 3463.73i −0.150099 + 0.259980i
$$563$$ −3572.63 6187.98i −0.267440 0.463219i 0.700760 0.713397i $$-0.252844\pi$$
−0.968200 + 0.250178i $$0.919511\pi$$
$$564$$ 9166.29 0.684344
$$565$$ 11262.4 + 19507.0i 0.838604 + 1.45250i
$$566$$ 466.475 + 807.958i 0.0346420 + 0.0600018i
$$567$$ −1013.65 −0.0750783
$$568$$ 530.083 + 918.131i 0.0391581 + 0.0678238i
$$569$$ −2219.43 + 3844.17i −0.163521 + 0.283226i −0.936129 0.351657i $$-0.885618\pi$$
0.772608 + 0.634883i $$0.218952\pi$$
$$570$$ −1162.38 + 2013.30i −0.0854151 + 0.147943i
$$571$$ 10117.3 0.741497 0.370748 0.928733i $$-0.379101\pi$$
0.370748 + 0.928733i $$0.379101\pi$$
$$572$$ 3846.94 7248.62i 0.281204 0.529860i
$$573$$ −9882.70 −0.720516
$$574$$ 271.554 470.346i 0.0197464 0.0342018i
$$575$$ −13499.2 + 23381.3i −0.979052 + 1.69577i
$$576$$ −2950.79 5110.92i −0.213454 0.369714i
$$577$$ 3105.60 0.224069 0.112035 0.993704i $$-0.464263\pi$$
0.112035 + 0.993704i $$0.464263\pi$$
$$578$$ −63.8074 110.518i −0.00459176 0.00795316i
$$579$$ −3630.62 6288.41i −0.260593 0.451360i
$$580$$ −14834.5 −1.06202
$$581$$ −914.081 1583.24i −0.0652711 0.113053i
$$582$$ −613.390 + 1062.42i −0.0436870 + 0.0756682i
$$583$$ −758.538 + 1313.83i −0.0538858 + 0.0933329i
$$584$$ 812.769 0.0575901
$$585$$ −11197.1 + 399.716i −0.791358 + 0.0282500i
$$586$$ −3628.05 −0.255757
$$587$$ −9831.16 + 17028.1i −0.691270 + 1.19731i 0.280152 + 0.959956i $$0.409615\pi$$
−0.971422 + 0.237359i $$0.923718\pi$$
$$588$$ 4508.43 7808.83i 0.316198 0.547671i
$$589$$ −11157.7 19325.8i −0.780555 1.35196i
$$590$$ −2272.95 −0.158603
$$591$$ −7398.88 12815.2i −0.514974 0.891960i
$$592$$ 127.513 + 220.859i 0.00885261 + 0.0153332i
$$593$$ 6395.51 0.442888 0.221444 0.975173i $$-0.428923\pi$$
0.221444 + 0.975173i $$0.428923\pi$$
$$594$$ −732.176 1268.17i −0.0505750 0.0875985i
$$595$$ 3292.05 5702.00i 0.226825 0.392872i
$$596$$ −7711.97 + 13357.5i −0.530025 + 0.918029i
$$597$$ 15571.6 1.06751
$$598$$ 2886.21 103.032i 0.197368 0.00704567i
$$599$$ 8878.48 0.605618 0.302809 0.953051i $$-0.402076\pi$$
0.302809 + 0.953051i $$0.402076\pi$$
$$600$$ 2453.12 4248.94i 0.166914 0.289103i
$$601$$ −9550.29 + 16541.6i −0.648194 + 1.12270i 0.335360 + 0.942090i $$0.391142\pi$$
−0.983554 + 0.180615i $$0.942191\pi$$
$$602$$ 32.8215 + 56.8485i 0.00222210 + 0.00384879i
$$603$$ 5706.26 0.385368
$$604$$ 7039.63 + 12193.0i 0.474236 + 0.821401i
$$605$$ −7374.16 12772.4i −0.495541 0.858302i
$$606$$ −563.330 −0.0377619
$$607$$ −8297.88 14372.4i −0.554861 0.961047i −0.997914 0.0645522i $$-0.979438\pi$$
0.443053 0.896495i $$-0.353895\pi$$
$$608$$ −3292.95 + 5703.56i −0.219650 + 0.380444i
$$609$$ −1069.00 + 1851.57i −0.0711300 + 0.123201i
$$610$$ 5178.97 0.343755
$$611$$ 7000.98 13191.6i 0.463551 0.873447i
$$612$$ 7125.21 0.470620
$$613$$ −8234.58 + 14262.7i −0.542564 + 0.939748i 0.456192 + 0.889881i $$0.349213\pi$$
−0.998756 + 0.0498668i $$0.984120\pi$$
$$614$$ −791.505 + 1370.93i −0.0520237 + 0.0901077i
$$615$$ −7472.59 12942.9i −0.489958 0.848631i
$$616$$ −845.205 −0.0552829
$$617$$ −5057.99 8760.69i −0.330027 0.571624i 0.652489 0.757798i $$-0.273725\pi$$
−0.982517 + 0.186174i $$0.940391\pi$$
$$618$$ 468.748 + 811.895i 0.0305110 + 0.0528466i
$$619$$ 18854.8 1.22430 0.612148 0.790743i $$-0.290306\pi$$
0.612148 + 0.790743i $$0.290306\pi$$
$$620$$ 19198.2 + 33252.2i 1.24357 + 2.15393i
$$621$$ −10465.8 + 18127.3i −0.676292 + 1.17137i
$$622$$ 730.247 1264.83i 0.0470743 0.0815352i
$$623$$ 3905.86 0.251180
$$624$$ 10256.3 366.132i 0.657984 0.0234888i
$$625$$ −2730.82 −0.174773
$$626$$ −78.5095 + 135.983i −0.00501258 + 0.00868204i
$$627$$ 3338.26 5782.03i 0.212627 0.368281i
$$628$$ −1550.50 2685.54i −0.0985215 0.170644i
$$629$$ −291.769 −0.0184954
$$630$$ 284.991 + 493.618i 0.0180227 + 0.0312162i
$$631$$ −9473.12 16407.9i −0.597653 1.03517i −0.993167 0.116705i $$-0.962767\pi$$
0.395514 0.918460i $$-0.370567\pi$$
$$632$$ 1403.24 0.0883194
$$633$$ 2514.17 + 4354.66i 0.157866 + 0.273432i
$$634$$ 668.074 1157.14i 0.0418496 0.0724856i
$$635$$ 23186.7 40160.5i 1.44903 2.50979i
$$636$$ −1946.40 −0.121352
$$637$$ −7794.62 12452.5i −0.484826 0.774545i
$$638$$ −1048.95 −0.0650912
$$639$$ −1026.63 + 1778.18i −0.0635571 + 0.110084i
$$640$$ 7521.75 13028.1i 0.464568 0.804655i
$$641$$ 11793.5 + 20426.9i 0.726698 + 1.25868i 0.958271 + 0.285861i $$0.0922795\pi$$
−0.231573 + 0.972818i $$0.574387\pi$$
$$642$$ 923.263 0.0567575
$$643$$ 13576.5 + 23515.2i 0.832669 + 1.44222i 0.895915 + 0.444226i $$0.146521\pi$$
−0.0632461 + 0.997998i $$0.520145\pi$$
$$644$$ 2983.63 + 5167.79i 0.182564 + 0.316211i
$$645$$ 1806.35 0.110272
$$646$$ −1204.35 2085.99i −0.0733506 0.127047i
$$647$$ −3428.36 + 5938.09i −0.208319 + 0.360820i −0.951185 0.308620i $$-0.900133\pi$$
0.742866 + 0.669440i $$0.233466\pi$$
$$648$$ 645.910 1118.75i 0.0391570 0.0678219i
$$649$$ 6527.75 0.394817
$$650$$ −2094.82 3346.62i −0.126408 0.201947i
$$651$$ 5533.83 0.333161
$$652$$ 3675.09 6365.44i 0.220748 0.382346i
$$653$$ 4036.95 6992.20i 0.241926 0.419029i −0.719337 0.694662i $$-0.755554\pi$$
0.961263 + 0.275633i $$0.0888874\pi$$
$$654$$ −142.169 246.245i −0.00850041 0.0147231i
$$655$$ −37960.9 −2.26451
$$656$$ −6767.39 11721.5i −0.402778 0.697632i
$$657$$ 787.061 + 1363.23i 0.0467370 + 0.0809508i
$$658$$ −759.734 −0.0450114
$$659$$ −2652.86 4594.89i −0.156815 0.271611i 0.776904 0.629620i $$-0.216789\pi$$
−0.933718 + 0.358008i $$0.883456\pi$$
$$660$$ −5743.84 + 9948.63i −0.338756 + 0.586742i
$$661$$ −12924.2 + 22385.3i −0.760502 + 1.31723i 0.182091 + 0.983282i $$0.441714\pi$$
−0.942592 + 0.333946i $$0.891620\pi$$
$$662$$ −3373.75 −0.198073
$$663$$ −5504.26 + 10371.4i −0.322425 + 0.607531i
$$664$$ 2329.85 0.136168
$$665$$ −3912.98 + 6777.48i −0.228179 + 0.395217i
$$666$$ 12.6291 21.8743i 0.000734788 0.00127269i
$$667$$ 7496.86 + 12984.9i 0.435202 + 0.753792i
$$668$$ −28735.9 −1.66441
$$669$$ −1951.89 3380.77i −0.112802 0.195379i
$$670$$ 1659.55 + 2874.42i 0.0956923 + 0.165744i
$$671$$ −14873.6 −0.855722
$$672$$ −816.591 1414.38i −0.0468760 0.0811917i
$$673$$ 7264.55 12582.6i 0.416089 0.720687i −0.579453 0.815005i $$-0.696734\pi$$
0.995542 + 0.0943186i $$0.0300673\pi$$
$$674$$ 1033.03 1789.26i 0.0590367 0.102255i
$$675$$ 28615.0 1.63169
$$676$$ 7495.72 15429.3i 0.426475 0.877860i
$$677$$ 12058.1 0.684535 0.342267 0.939603i $$-0.388805\pi$$
0.342267 + 0.939603i $$0.388805\pi$$
$$678$$ −1021.73 + 1769.68i −0.0578749 + 0.100242i
$$679$$ −2064.89 + 3576.50i −0.116706 + 0.202140i
$$680$$ 4195.46 + 7266.74i 0.236601 + 0.409804i
$$681$$ −12764.4 −0.718255
$$682$$ 1357.50 + 2351.26i 0.0762190 + 0.132015i
$$683$$ −15014.4 26005.7i −0.841156 1.45693i −0.888918 0.458067i $$-0.848542\pi$$
0.0477615 0.998859i $$-0.484791\pi$$
$$684$$ −8469.13 −0.473429
$$685$$ 6125.74 + 10610.1i 0.341682 + 0.591811i
$$686$$ −782.611 + 1355.52i −0.0435572 + 0.0754433i
$$687$$ −4282.75 + 7417.94i −0.237842 + 0.411954i
$$688$$ 1635.89 0.0906505
$$689$$ −1486.61 + 2801.15i −0.0821994 + 0.154884i
$$690$$ −4042.94 −0.223061
$$691$$ −224.848 + 389.448i −0.0123786 + 0.0214404i −0.872148 0.489241i $$-0.837274\pi$$
0.859770 + 0.510682i $$0.170607\pi$$
$$692$$ 5554.34 9620.40i 0.305122 0.528487i
$$693$$ −818.471 1417.63i −0.0448646 0.0777077i
$$694$$ 2307.10 0.126191
$$695$$ −6050.90 10480.5i −0.330250 0.572010i
$$696$$ −1362.36 2359.68i −0.0741955 0.128510i
$$697$$ 15484.8 0.841506
$$698$$ 11.0345 + 19.1123i 0.000598370 + 0.00103641i
$$699$$ −6873.75 + 11905.7i −0.371944 + 0.644227i
$$700$$ 4078.84 7064.75i 0.220236 0.381461i
$$701$$ −26986.0 −1.45399 −0.726994 0.686644i $$-0.759083\pi$$
−0.726994 + 0.686644i $$0.759083\pi$$
$$702$$ −1624.09 2594.60i −0.0873181 0.139497i
$$703$$ 346.801 0.0186057
$$704$$ −4929.23 + 8537.67i −0.263888 + 0.457068i
$$705$$ −10453.1 + 18105.3i −0.558422 + 0.967215i
$$706$$ 1985.65 + 3439.24i 0.105851 + 0.183339i
$$707$$ −1896.37 −0.100877
$$708$$ 4187.53 + 7253.01i 0.222284 + 0.385007i
$$709$$ 4549.44 + 7879.85i 0.240984 + 0.417396i 0.960995 0.276566i $$-0.0891965\pi$$
−0.720011 + 0.693963i $$0.755863\pi$$
$$710$$ −1194.30 −0.0631285
$$711$$ 1358.85 + 2353.60i 0.0716751 + 0.124145i
$$712$$ −2488.85 + 4310.82i −0.131002 + 0.226903i
$$713$$ 19404.2 33609.1i 1.01921 1.76532i
$$714$$ 597.312 0.0313079
$$715$$ 9930.53 + 15864.8i 0.519414 + 0.829802i
$$716$$ −9118.62 −0.475948
$$717$$ 11135.9 19287.9i 0.580025 1.00463i
$$718$$ 1573.56 2725.48i 0.0817892 0.141663i
$$719$$ 3146.78 + 5450.38i 0.163220 + 0.282705i 0.936022 0.351942i $$-0.114479\pi$$
−0.772802 + 0.634647i $$0.781145\pi$$
$$720$$ 14204.5 0.735235
$$721$$ 1577.97 + 2733.13i 0.0815074 + 0.141175i
$$722$$ −72.1476 124.963i −0.00371892 0.00644135i
$$723$$ 19064.3 0.980648
$$724$$ −4426.86 7667.54i −0.227242 0.393594i
$$725$$ 10248.8 17751.4i 0.525006 0.909337i
$$726$$ 668.987 1158.72i 0.0341989 0.0592343i
$$727$$ 18070.7 0.921878 0.460939 0.887432i $$-0.347513\pi$$
0.460939 + 0.887432i $$0.347513\pi$$
$$728$$ −1765.64 + 63.0298i −0.0898885 + 0.00320885i
$$729$$ 17319.9 0.879944
$$730$$ −457.800 + 792.934i −0.0232109 + 0.0402025i
$$731$$ −935.790 + 1620.84i −0.0473481 + 0.0820093i
$$732$$ −9541.37 16526.1i −0.481775 0.834459i
$$733$$ 34771.5 1.75214 0.876068 0.482188i $$-0.160158\pi$$
0.876068 + 0.482188i $$0.160158\pi$$
$$734$$ 877.803 + 1520.40i 0.0441421 + 0.0764563i
$$735$$ 10282.7 + 17810.2i 0.516032 + 0.893794i
$$736$$ −11453.4 −0.573613
$$737$$ −4766.09 8255.10i −0.238210 0.412592i
$$738$$ −670.256 + 1160.92i −0.0334315 + 0.0579051i
$$739$$ −11815.7 + 20465.4i −0.588158 + 1.01872i 0.406316 + 0.913733i $$0.366813\pi$$
−0.994474 + 0.104986i $$0.966520\pi$$
$$740$$ −596.710 −0.0296425
$$741$$ 6542.44 12327.6i 0.324349 0.611156i
$$742$$ 161.324 0.00798167
$$743$$ −16251.4 + 28148.3i −0.802431 + 1.38985i 0.115581 + 0.993298i $$0.463127\pi$$
−0.918012 + 0.396553i $$0.870206\pi$$
$$744$$ −3526.21 + 6107.58i −0.173760 + 0.300961i
$$745$$ −17589.3 30465.5i −0.864995 1.49822i
$$746$$ 4390.69 0.215489
$$747$$ 2256.16 + 3907.78i 0.110507 + 0.191403i
$$748$$ −5951.25 10307.9i −0.290908 0.503868i
$$749$$ 3108.04 0.151622
$$750$$ 965.435 + 1672.18i 0.0470036 + 0.0814126i
$$751$$ −1010.43 + 1750.12i −0.0490960 + 0.0850368i −0.889529 0.456879i $$-0.848967\pi$$
0.840433 + 0.541915i $$0.182301\pi$$
$$752$$ −9466.65 + 16396.7i −0.459060 + 0.795115i
$$753$$ −20710.5 −1.00230
$$754$$ −2191.25 + 78.2235i −0.105836 + 0.00377816i
$$755$$ −32111.6 −1.54790
$$756$$ 3162.28 5477.23i 0.152131 0.263499i
$$757$$ −6284.11 + 10884.4i −0.301717 + 0.522589i −0.976525 0.215404i $$-0.930893\pi$$
0.674808 + 0.737993i $$0.264226\pi$$
$$758$$ −1790.86 3101.87i −0.0858141 0.148634i
$$759$$ 11611.0 0.555273
$$760$$ −4986.78 8637.36i −0.238013 0.412250i
$$761$$ 4352.40 + 7538.59i 0.207325 + 0.359098i 0.950871 0.309587i $$-0.100191\pi$$
−0.743546 + 0.668685i $$0.766857\pi$$
$$762$$ 4207.01 0.200005
$$763$$ −478.593 828.948i −0.0227081 0.0393315i
$$764$$ 10470.7 18135.8i 0.495832 0.858807i
$$765$$ −8125.51 + 14073.8i −0.384024 + 0.665149i
$$766$$ 3205.16 0.151184