# Properties

 Label 13.4.c.b.3.2 Level $13$ Weight $4$ Character 13.3 Analytic conductor $0.767$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 13.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.767024830075$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{17})$$ Defining polynomial: $$x^{4} - x^{3} + 5x^{2} + 4x + 16$$ x^4 - x^3 + 5*x^2 + 4*x + 16 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 3.2 Root $$1.28078 - 2.21837i$$ of defining polynomial Character $$\chi$$ $$=$$ 13.3 Dual form 13.4.c.b.9.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.28078 + 3.95042i) q^{2} +(-4.34233 - 7.52113i) q^{3} +(-6.40388 + 11.0918i) q^{4} +2.80776 q^{5} +(19.8078 - 34.3081i) q^{6} +(-4.78078 + 8.28055i) q^{7} -21.9309 q^{8} +(-24.2116 + 41.9358i) q^{9} +O(q^{10})$$ $$q+(2.28078 + 3.95042i) q^{2} +(-4.34233 - 7.52113i) q^{3} +(-6.40388 + 11.0918i) q^{4} +2.80776 q^{5} +(19.8078 - 34.3081i) q^{6} +(-4.78078 + 8.28055i) q^{7} -21.9309 q^{8} +(-24.2116 + 41.9358i) q^{9} +(6.40388 + 11.0918i) q^{10} +(-19.7116 - 34.1416i) q^{11} +111.231 q^{12} +(40.5270 + 23.5492i) q^{13} -43.6155 q^{14} +(-12.1922 - 21.1176i) q^{15} +(1.21165 + 2.09863i) q^{16} +(-1.00758 + 1.74518i) q^{17} -220.885 q^{18} +(30.0961 - 52.1280i) q^{19} +(-17.9806 + 31.1433i) q^{20} +83.0388 q^{21} +(89.9157 - 155.739i) q^{22} +(-2.23438 - 3.87006i) q^{23} +(95.2311 + 164.945i) q^{24} -117.116 q^{25} +(-0.596118 + 213.809i) q^{26} +186.054 q^{27} +(-61.2311 - 106.055i) q^{28} +(-70.3466 - 121.844i) q^{29} +(55.6155 - 96.3289i) q^{30} +136.155 q^{31} +(-93.2505 + 161.515i) q^{32} +(-171.189 + 296.508i) q^{33} -9.19224 q^{34} +(-13.4233 + 23.2498i) q^{35} +(-310.097 - 537.104i) q^{36} +(92.8542 + 160.828i) q^{37} +274.570 q^{38} +(1.13494 - 407.067i) q^{39} -61.5767 q^{40} +(-155.116 - 268.668i) q^{41} +(189.393 + 328.038i) q^{42} +(-213.735 + 370.200i) q^{43} +504.924 q^{44} +(-67.9806 + 117.746i) q^{45} +(10.1922 - 17.6535i) q^{46} -258.617 q^{47} +(10.5227 - 18.2259i) q^{48} +(125.788 + 217.872i) q^{49} +(-267.116 - 462.659i) q^{50} +17.5009 q^{51} +(-520.734 + 298.713i) q^{52} +612.656 q^{53} +(424.348 + 734.991i) q^{54} +(-55.3457 - 95.8615i) q^{55} +(104.847 - 181.600i) q^{56} -522.749 q^{57} +(320.890 - 555.797i) q^{58} +(258.943 - 448.502i) q^{59} +312.311 q^{60} +(80.6553 - 139.699i) q^{61} +(310.540 + 537.871i) q^{62} +(-231.501 - 400.971i) q^{63} -831.348 q^{64} +(113.790 + 66.1205i) q^{65} -1561.77 q^{66} +(24.9493 + 43.2135i) q^{67} +(-12.9048 - 22.3518i) q^{68} +(-19.4048 + 33.6101i) q^{69} -122.462 q^{70} +(-139.982 + 242.455i) q^{71} +(530.982 - 919.689i) q^{72} +467.732 q^{73} +(-423.559 + 733.626i) q^{74} +(508.558 + 880.849i) q^{75} +(385.464 + 667.643i) q^{76} +376.948 q^{77} +(1610.68 - 923.946i) q^{78} +37.5379 q^{79} +(3.40202 + 5.89247i) q^{80} +(-154.193 - 267.070i) q^{81} +(707.568 - 1225.54i) q^{82} -76.1553 q^{83} +(-531.771 + 921.054i) q^{84} +(-2.82904 + 4.90004i) q^{85} -1949.93 q^{86} +(-610.936 + 1058.17i) q^{87} +(432.294 + 748.754i) q^{88} +(-101.403 - 175.635i) q^{89} -620.194 q^{90} +(-388.750 + 223.002i) q^{91} +57.2348 q^{92} +(-591.231 - 1024.04i) q^{93} +(-589.848 - 1021.65i) q^{94} +(84.5028 - 146.363i) q^{95} +1619.70 q^{96} +(587.184 - 1017.03i) q^{97} +(-573.790 + 993.834i) q^{98} +1909.01 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 5 q^{2} - 5 q^{3} - 5 q^{4} - 30 q^{5} + 38 q^{6} - 15 q^{7} - 30 q^{8} - 35 q^{9}+O(q^{10})$$ 4 * q + 5 * q^2 - 5 * q^3 - 5 * q^4 - 30 * q^5 + 38 * q^6 - 15 * q^7 - 30 * q^8 - 35 * q^9 $$4 q + 5 q^{2} - 5 q^{3} - 5 q^{4} - 30 q^{5} + 38 q^{6} - 15 q^{7} - 30 q^{8} - 35 q^{9} + 5 q^{10} - 17 q^{11} + 280 q^{12} + 125 q^{13} - 92 q^{14} - 90 q^{15} - 57 q^{16} - 70 q^{17} - 430 q^{18} + 141 q^{19} - 175 q^{20} + 126 q^{21} + 170 q^{22} - 145 q^{23} + 216 q^{24} + 150 q^{25} - 23 q^{26} + 670 q^{27} - 80 q^{28} - 34 q^{29} + 140 q^{30} - 280 q^{31} - 105 q^{32} - 425 q^{33} - 78 q^{34} + 70 q^{35} - 725 q^{36} + 190 q^{37} + 620 q^{38} - 181 q^{39} - 370 q^{40} - 538 q^{41} + 370 q^{42} - 455 q^{43} + 1360 q^{44} - 375 q^{45} + 82 q^{46} + 120 q^{47} + 240 q^{48} + 565 q^{49} - 450 q^{50} - 466 q^{51} - 310 q^{52} + 1090 q^{53} + 914 q^{54} - 510 q^{55} + 172 q^{56} - 450 q^{57} + 595 q^{58} + 809 q^{59} - 400 q^{60} - 502 q^{61} + 500 q^{62} - 390 q^{63} - 2542 q^{64} - 555 q^{65} - 3196 q^{66} + 475 q^{67} + 505 q^{68} + 479 q^{69} - 160 q^{70} - 127 q^{71} + 1155 q^{72} + 1170 q^{73} - 849 q^{74} + 1725 q^{75} + 140 q^{76} + 510 q^{77} + 3070 q^{78} + 480 q^{79} + 1065 q^{80} - 122 q^{81} + 1515 q^{82} + 520 q^{83} - 1220 q^{84} + 1205 q^{85} - 3924 q^{86} - 1615 q^{87} + 1020 q^{88} - 921 q^{89} - 1450 q^{90} - 1287 q^{91} - 2080 q^{92} - 2200 q^{93} - 1040 q^{94} - 1270 q^{95} + 3840 q^{96} + 415 q^{97} - 1285 q^{98} + 4420 q^{99}+O(q^{100})$$ 4 * q + 5 * q^2 - 5 * q^3 - 5 * q^4 - 30 * q^5 + 38 * q^6 - 15 * q^7 - 30 * q^8 - 35 * q^9 + 5 * q^10 - 17 * q^11 + 280 * q^12 + 125 * q^13 - 92 * q^14 - 90 * q^15 - 57 * q^16 - 70 * q^17 - 430 * q^18 + 141 * q^19 - 175 * q^20 + 126 * q^21 + 170 * q^22 - 145 * q^23 + 216 * q^24 + 150 * q^25 - 23 * q^26 + 670 * q^27 - 80 * q^28 - 34 * q^29 + 140 * q^30 - 280 * q^31 - 105 * q^32 - 425 * q^33 - 78 * q^34 + 70 * q^35 - 725 * q^36 + 190 * q^37 + 620 * q^38 - 181 * q^39 - 370 * q^40 - 538 * q^41 + 370 * q^42 - 455 * q^43 + 1360 * q^44 - 375 * q^45 + 82 * q^46 + 120 * q^47 + 240 * q^48 + 565 * q^49 - 450 * q^50 - 466 * q^51 - 310 * q^52 + 1090 * q^53 + 914 * q^54 - 510 * q^55 + 172 * q^56 - 450 * q^57 + 595 * q^58 + 809 * q^59 - 400 * q^60 - 502 * q^61 + 500 * q^62 - 390 * q^63 - 2542 * q^64 - 555 * q^65 - 3196 * q^66 + 475 * q^67 + 505 * q^68 + 479 * q^69 - 160 * q^70 - 127 * q^71 + 1155 * q^72 + 1170 * q^73 - 849 * q^74 + 1725 * q^75 + 140 * q^76 + 510 * q^77 + 3070 * q^78 + 480 * q^79 + 1065 * q^80 - 122 * q^81 + 1515 * q^82 + 520 * q^83 - 1220 * q^84 + 1205 * q^85 - 3924 * q^86 - 1615 * q^87 + 1020 * q^88 - 921 * q^89 - 1450 * q^90 - 1287 * q^91 - 2080 * q^92 - 2200 * q^93 - 1040 * q^94 - 1270 * q^95 + 3840 * q^96 + 415 * q^97 - 1285 * q^98 + 4420 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/13\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.28078 + 3.95042i 0.806376 + 1.39668i 0.915358 + 0.402641i $$0.131908\pi$$
−0.108982 + 0.994044i $$0.534759\pi$$
$$3$$ −4.34233 7.52113i −0.835682 1.44744i −0.893474 0.449114i $$-0.851740\pi$$
0.0577926 0.998329i $$-0.481594\pi$$
$$4$$ −6.40388 + 11.0918i −0.800485 + 1.38648i
$$5$$ 2.80776 0.251134 0.125567 0.992085i $$-0.459925\pi$$
0.125567 + 0.992085i $$0.459925\pi$$
$$6$$ 19.8078 34.3081i 1.34775 2.33437i
$$7$$ −4.78078 + 8.28055i −0.258138 + 0.447108i −0.965743 0.259500i $$-0.916442\pi$$
0.707605 + 0.706608i $$0.249775\pi$$
$$8$$ −21.9309 −0.969217
$$9$$ −24.2116 + 41.9358i −0.896728 + 1.55318i
$$10$$ 6.40388 + 11.0918i 0.202509 + 0.350755i
$$11$$ −19.7116 34.1416i −0.540299 0.935825i −0.998887 0.0471757i $$-0.984978\pi$$
0.458588 0.888649i $$-0.348355\pi$$
$$12$$ 111.231 2.67580
$$13$$ 40.5270 + 23.5492i 0.864628 + 0.502413i
$$14$$ −43.6155 −0.832624
$$15$$ −12.1922 21.1176i −0.209868 0.363502i
$$16$$ 1.21165 + 2.09863i 0.0189320 + 0.0327911i
$$17$$ −1.00758 + 1.74518i −0.0143749 + 0.0248981i −0.873123 0.487499i $$-0.837909\pi$$
0.858748 + 0.512397i $$0.171242\pi$$
$$18$$ −220.885 −2.89240
$$19$$ 30.0961 52.1280i 0.363396 0.629420i −0.625121 0.780528i $$-0.714951\pi$$
0.988517 + 0.151107i $$0.0482839\pi$$
$$20$$ −17.9806 + 31.1433i −0.201029 + 0.348193i
$$21$$ 83.0388 0.862884
$$22$$ 89.9157 155.739i 0.871368 1.50925i
$$23$$ −2.23438 3.87006i −0.0202565 0.0350853i 0.855719 0.517440i $$-0.173115\pi$$
−0.875976 + 0.482355i $$0.839782\pi$$
$$24$$ 95.2311 + 164.945i 0.809957 + 1.40289i
$$25$$ −117.116 −0.936932
$$26$$ −0.596118 + 213.809i −0.00449648 + 1.61275i
$$27$$ 186.054 1.32615
$$28$$ −61.2311 106.055i −0.413271 0.715806i
$$29$$ −70.3466 121.844i −0.450449 0.780201i 0.547964 0.836502i $$-0.315403\pi$$
−0.998414 + 0.0563003i $$0.982070\pi$$
$$30$$ 55.6155 96.3289i 0.338465 0.586239i
$$31$$ 136.155 0.788845 0.394423 0.918929i $$-0.370945\pi$$
0.394423 + 0.918929i $$0.370945\pi$$
$$32$$ −93.2505 + 161.515i −0.515141 + 0.892250i
$$33$$ −171.189 + 296.508i −0.903035 + 1.56410i
$$34$$ −9.19224 −0.0463663
$$35$$ −13.4233 + 23.2498i −0.0648272 + 0.112284i
$$36$$ −310.097 537.104i −1.43563 2.48659i
$$37$$ 92.8542 + 160.828i 0.412571 + 0.714594i 0.995170 0.0981657i $$-0.0312975\pi$$
−0.582599 + 0.812760i $$0.697964\pi$$
$$38$$ 274.570 1.17214
$$39$$ 1.13494 407.067i 0.00465989 1.67136i
$$40$$ −61.5767 −0.243403
$$41$$ −155.116 268.668i −0.590853 1.02339i −0.994118 0.108304i $$-0.965458\pi$$
0.403265 0.915083i $$-0.367875\pi$$
$$42$$ 189.393 + 328.038i 0.695809 + 1.20518i
$$43$$ −213.735 + 370.200i −0.758008 + 1.31291i 0.185857 + 0.982577i $$0.440494\pi$$
−0.943865 + 0.330331i $$0.892840\pi$$
$$44$$ 504.924 1.73000
$$45$$ −67.9806 + 117.746i −0.225199 + 0.390056i
$$46$$ 10.1922 17.6535i 0.0326688 0.0565840i
$$47$$ −258.617 −0.802622 −0.401311 0.915942i $$-0.631445\pi$$
−0.401311 + 0.915942i $$0.631445\pi$$
$$48$$ 10.5227 18.2259i 0.0316422 0.0548059i
$$49$$ 125.788 + 217.872i 0.366730 + 0.635195i
$$50$$ −267.116 462.659i −0.755519 1.30860i
$$51$$ 17.5009 0.0480514
$$52$$ −520.734 + 298.713i −1.38871 + 0.796617i
$$53$$ 612.656 1.58783 0.793913 0.608031i $$-0.208040\pi$$
0.793913 + 0.608031i $$0.208040\pi$$
$$54$$ 424.348 + 734.991i 1.06938 + 1.85222i
$$55$$ −55.3457 95.8615i −0.135687 0.235017i
$$56$$ 104.847 181.600i 0.250191 0.433344i
$$57$$ −522.749 −1.21473
$$58$$ 320.890 555.797i 0.726463 1.25827i
$$59$$ 258.943 448.502i 0.571381 0.989661i −0.425044 0.905173i $$-0.639741\pi$$
0.996425 0.0844878i $$-0.0269254\pi$$
$$60$$ 312.311 0.671985
$$61$$ 80.6553 139.699i 0.169293 0.293223i −0.768879 0.639395i $$-0.779185\pi$$
0.938171 + 0.346171i $$0.112518\pi$$
$$62$$ 310.540 + 537.871i 0.636106 + 1.10177i
$$63$$ −231.501 400.971i −0.462958 0.801867i
$$64$$ −831.348 −1.62373
$$65$$ 113.790 + 66.1205i 0.217138 + 0.126173i
$$66$$ −1561.77 −2.91274
$$67$$ 24.9493 + 43.2135i 0.0454933 + 0.0787966i 0.887875 0.460084i $$-0.152181\pi$$
−0.842382 + 0.538881i $$0.818847\pi$$
$$68$$ −12.9048 22.3518i −0.0230138 0.0398611i
$$69$$ −19.4048 + 33.6101i −0.0338560 + 0.0586403i
$$70$$ −122.462 −0.209100
$$71$$ −139.982 + 242.455i −0.233982 + 0.405269i −0.958976 0.283486i $$-0.908509\pi$$
0.724994 + 0.688755i $$0.241842\pi$$
$$72$$ 530.982 919.689i 0.869123 1.50537i
$$73$$ 467.732 0.749916 0.374958 0.927042i $$-0.377657\pi$$
0.374958 + 0.927042i $$0.377657\pi$$
$$74$$ −423.559 + 733.626i −0.665375 + 1.15246i
$$75$$ 508.558 + 880.849i 0.782977 + 1.35616i
$$76$$ 385.464 + 667.643i 0.581786 + 1.00768i
$$77$$ 376.948 0.557886
$$78$$ 1610.68 923.946i 2.33812 1.34123i
$$79$$ 37.5379 0.0534600 0.0267300 0.999643i $$-0.491491\pi$$
0.0267300 + 0.999643i $$0.491491\pi$$
$$80$$ 3.40202 + 5.89247i 0.00475446 + 0.00823497i
$$81$$ −154.193 267.070i −0.211513 0.366352i
$$82$$ 707.568 1225.54i 0.952900 1.65047i
$$83$$ −76.1553 −0.100712 −0.0503562 0.998731i $$-0.516036\pi$$
−0.0503562 + 0.998731i $$0.516036\pi$$
$$84$$ −531.771 + 921.054i −0.690726 + 1.19637i
$$85$$ −2.82904 + 4.90004i −0.00361003 + 0.00625275i
$$86$$ −1949.93 −2.44496
$$87$$ −610.936 + 1058.17i −0.752865 + 1.30400i
$$88$$ 432.294 + 748.754i 0.523666 + 0.907017i
$$89$$ −101.403 175.635i −0.120772 0.209183i 0.799300 0.600932i $$-0.205204\pi$$
−0.920072 + 0.391749i $$0.871870\pi$$
$$90$$ −620.194 −0.726380
$$91$$ −388.750 + 223.002i −0.447826 + 0.256890i
$$92$$ 57.2348 0.0648602
$$93$$ −591.231 1024.04i −0.659224 1.14181i
$$94$$ −589.848 1021.65i −0.647215 1.12101i
$$95$$ 84.5028 146.363i 0.0912611 0.158069i
$$96$$ 1619.70 1.72198
$$97$$ 587.184 1017.03i 0.614634 1.06458i −0.375814 0.926695i $$-0.622637\pi$$
0.990449 0.137883i $$-0.0440297\pi$$
$$98$$ −573.790 + 993.834i −0.591445 + 1.02441i
$$99$$ 1909.01 1.93800
$$100$$ 750.000 1299.04i 0.750000 1.29904i
$$101$$ −485.348 840.648i −0.478158 0.828194i 0.521528 0.853234i $$-0.325362\pi$$
−0.999686 + 0.0250397i $$0.992029\pi$$
$$102$$ 39.9157 + 69.1360i 0.0387475 + 0.0671126i
$$103$$ −1899.70 −1.81731 −0.908654 0.417550i $$-0.862889\pi$$
−0.908654 + 0.417550i $$0.862889\pi$$
$$104$$ −888.792 516.454i −0.838012 0.486947i
$$105$$ 233.153 0.216699
$$106$$ 1397.33 + 2420.25i 1.28039 + 2.21769i
$$107$$ 953.247 + 1651.07i 0.861251 + 1.49173i 0.870722 + 0.491775i $$0.163652\pi$$
−0.00947163 + 0.999955i $$0.503015\pi$$
$$108$$ −1191.47 + 2063.68i −1.06157 + 1.83868i
$$109$$ −896.004 −0.787354 −0.393677 0.919249i $$-0.628797\pi$$
−0.393677 + 0.919249i $$0.628797\pi$$
$$110$$ 252.462 437.277i 0.218830 0.379025i
$$111$$ 806.407 1396.74i 0.689556 1.19435i
$$112$$ −23.1704 −0.0195482
$$113$$ 167.441 290.017i 0.139394 0.241438i −0.787873 0.615837i $$-0.788818\pi$$
0.927267 + 0.374400i $$0.122151\pi$$
$$114$$ −1192.27 2065.08i −0.979532 1.69660i
$$115$$ −6.27361 10.8662i −0.00508710 0.00881112i
$$116$$ 1801.96 1.44231
$$117$$ −1968.78 + 1129.37i −1.55567 + 0.892394i
$$118$$ 2362.36 1.84299
$$119$$ −9.63401 16.6866i −0.00742141 0.0128543i
$$120$$ 267.386 + 463.127i 0.203408 + 0.352312i
$$121$$ −111.598 + 193.293i −0.0838452 + 0.145224i
$$122$$ 735.827 0.546054
$$123$$ −1347.13 + 2333.29i −0.987530 + 1.71045i
$$124$$ −871.922 + 1510.21i −0.631459 + 1.09372i
$$125$$ −679.806 −0.486430
$$126$$ 1056.00 1829.05i 0.746637 1.29321i
$$127$$ −310.447 537.709i −0.216911 0.375701i 0.736951 0.675946i $$-0.236265\pi$$
−0.953862 + 0.300245i $$0.902931\pi$$
$$128$$ −1150.11 1992.06i −0.794193 1.37558i
$$129$$ 3712.44 2.53381
$$130$$ −1.67376 + 600.325i −0.00112922 + 0.405015i
$$131$$ −1331.70 −0.888180 −0.444090 0.895982i $$-0.646473\pi$$
−0.444090 + 0.895982i $$0.646473\pi$$
$$132$$ −2192.55 3797.60i −1.44573 2.50408i
$$133$$ 287.766 + 498.425i 0.187612 + 0.324954i
$$134$$ −113.808 + 197.121i −0.0733694 + 0.127079i
$$135$$ 522.396 0.333042
$$136$$ 22.0971 38.2732i 0.0139324 0.0241316i
$$137$$ −311.008 + 538.681i −0.193950 + 0.335932i −0.946556 0.322540i $$-0.895463\pi$$
0.752606 + 0.658471i $$0.228797\pi$$
$$138$$ −177.032 −0.109203
$$139$$ −165.290 + 286.291i −0.100861 + 0.174697i −0.912040 0.410102i $$-0.865493\pi$$
0.811178 + 0.584799i $$0.198827\pi$$
$$140$$ −171.922 297.778i −0.103786 0.179763i
$$141$$ 1123.00 + 1945.10i 0.670736 + 1.16175i
$$142$$ −1277.07 −0.754711
$$143$$ 5.15196 1847.85i 0.00301279 1.08059i
$$144$$ −117.344 −0.0679073
$$145$$ −197.517 342.109i −0.113123 0.195935i
$$146$$ 1066.79 + 1847.74i 0.604715 + 1.04740i
$$147$$ 1092.43 1892.14i 0.612939 1.06164i
$$148$$ −2378.51 −1.32103
$$149$$ 905.269 1567.97i 0.497735 0.862102i −0.502262 0.864716i $$-0.667499\pi$$
0.999997 + 0.00261337i $$0.000831864\pi$$
$$150$$ −2319.82 + 4018.04i −1.26275 + 2.18714i
$$151$$ −423.239 −0.228097 −0.114049 0.993475i $$-0.536382\pi$$
−0.114049 + 0.993475i $$0.536382\pi$$
$$152$$ −660.034 + 1143.21i −0.352209 + 0.610045i
$$153$$ −48.7902 84.5071i −0.0257808 0.0446536i
$$154$$ 859.734 + 1489.10i 0.449866 + 0.779190i
$$155$$ 382.292 0.198106
$$156$$ 4507.86 + 2619.40i 2.31357 + 1.34436i
$$157$$ 1322.17 0.672105 0.336052 0.941843i $$-0.390908\pi$$
0.336052 + 0.941843i $$0.390908\pi$$
$$158$$ 85.6155 + 148.290i 0.0431089 + 0.0746668i
$$159$$ −2660.35 4607.87i −1.32692 2.29829i
$$160$$ −261.825 + 453.495i −0.129369 + 0.224074i
$$161$$ 42.7283 0.0209159
$$162$$ 703.360 1218.26i 0.341119 0.590835i
$$163$$ 1803.20 3123.23i 0.866486 1.50080i 0.000922205 1.00000i $$-0.499706\pi$$
0.865564 0.500798i $$-0.166960\pi$$
$$164$$ 3973.37 1.89188
$$165$$ −480.658 + 832.524i −0.226783 + 0.392800i
$$166$$ −173.693 300.845i −0.0812121 0.140663i
$$167$$ 1707.72 + 2957.85i 0.791300 + 1.37057i 0.925162 + 0.379571i $$0.123929\pi$$
−0.133863 + 0.991000i $$0.542738\pi$$
$$168$$ −1821.11 −0.836321
$$169$$ 1087.87 + 1908.75i 0.495163 + 0.868800i
$$170$$ −25.8096 −0.0116442
$$171$$ 1457.35 + 2524.21i 0.651734 + 1.12884i
$$172$$ −2737.47 4741.44i −1.21355 2.10193i
$$173$$ −1171.11 + 2028.43i −0.514671 + 0.891436i 0.485184 + 0.874412i $$0.338753\pi$$
−0.999855 + 0.0170243i $$0.994581\pi$$
$$174$$ −5573.63 −2.42837
$$175$$ 559.908 969.788i 0.241857 0.418909i
$$176$$ 47.7671 82.7350i 0.0204578 0.0354340i
$$177$$ −4497.66 −1.90997
$$178$$ 462.555 801.169i 0.194775 0.337360i
$$179$$ 333.446 + 577.545i 0.139234 + 0.241160i 0.927207 0.374550i $$-0.122203\pi$$
−0.787973 + 0.615710i $$0.788869\pi$$
$$180$$ −870.679 1508.06i −0.360537 0.624468i
$$181$$ −701.037 −0.287888 −0.143944 0.989586i $$-0.545978\pi$$
−0.143944 + 0.989586i $$0.545978\pi$$
$$182$$ −1767.61 1027.11i −0.719910 0.418321i
$$183$$ −1400.93 −0.565899
$$184$$ 49.0019 + 84.8737i 0.0196330 + 0.0340053i
$$185$$ 260.713 + 451.567i 0.103611 + 0.179459i
$$186$$ 2696.93 4671.22i 1.06316 1.84146i
$$187$$ 79.4440 0.0310670
$$188$$ 1656.16 2868.55i 0.642487 1.11282i
$$189$$ −889.482 + 1540.63i −0.342330 + 0.592933i
$$190$$ 770.928 0.294363
$$191$$ −650.440 + 1126.59i −0.246409 + 0.426793i −0.962527 0.271186i $$-0.912584\pi$$
0.716118 + 0.697980i $$0.245917\pi$$
$$192$$ 3609.98 + 6252.68i 1.35692 + 2.35025i
$$193$$ 259.667 + 449.756i 0.0968457 + 0.167742i 0.910377 0.413779i $$-0.135791\pi$$
−0.813532 + 0.581521i $$0.802458\pi$$
$$194$$ 5356.94 1.98251
$$195$$ 3.18664 1142.95i 0.00117026 0.419735i
$$196$$ −3222.14 −1.17425
$$197$$ −1560.52 2702.91i −0.564379 0.977534i −0.997107 0.0760091i $$-0.975782\pi$$
0.432728 0.901525i $$-0.357551\pi$$
$$198$$ 4354.01 + 7541.38i 1.56276 + 2.70678i
$$199$$ −618.529 + 1071.32i −0.220333 + 0.381629i −0.954909 0.296898i $$-0.904048\pi$$
0.734576 + 0.678527i $$0.237381\pi$$
$$200$$ 2568.47 0.908090
$$201$$ 216.677 375.295i 0.0760358 0.131698i
$$202$$ 2213.94 3834.66i 0.771151 1.33567i
$$203$$ 1345.25 0.465112
$$204$$ −112.074 + 194.118i −0.0384644 + 0.0666223i
$$205$$ −435.528 754.356i −0.148383 0.257007i
$$206$$ −4332.78 7504.60i −1.46543 2.53821i
$$207$$ 216.392 0.0726584
$$208$$ −0.316683 + 113.585i −0.000105568 + 0.0378638i
$$209$$ −2372.98 −0.785369
$$210$$ 531.771 + 921.054i 0.174741 + 0.302661i
$$211$$ 1265.83 + 2192.49i 0.413003 + 0.715342i 0.995217 0.0976940i $$-0.0311466\pi$$
−0.582214 + 0.813036i $$0.697813\pi$$
$$212$$ −3923.38 + 6795.49i −1.27103 + 2.20149i
$$213$$ 2431.38 0.782139
$$214$$ −4348.28 + 7531.45i −1.38898 + 2.40579i
$$215$$ −600.118 + 1039.44i −0.190362 + 0.329716i
$$216$$ −4080.33 −1.28533
$$217$$ −650.928 + 1127.44i −0.203631 + 0.352699i
$$218$$ −2043.58 3539.59i −0.634904 1.09969i
$$219$$ −2031.05 3517.88i −0.626691 1.08546i
$$220$$ 1417.71 0.434463
$$221$$ −81.9315 + 46.9991i −0.0249381 + 0.0143054i
$$222$$ 7356.93 2.22417
$$223$$ 597.766 + 1035.36i 0.179504 + 0.310910i 0.941711 0.336424i $$-0.109217\pi$$
−0.762207 + 0.647333i $$0.775884\pi$$
$$224$$ −891.619 1544.33i −0.265955 0.460647i
$$225$$ 2835.58 4911.37i 0.840173 1.45522i
$$226$$ 1527.58 0.449617
$$227$$ 434.596 752.742i 0.127071 0.220094i −0.795469 0.605994i $$-0.792776\pi$$
0.922541 + 0.385900i $$0.126109\pi$$
$$228$$ 3347.62 5798.25i 0.972376 1.68420i
$$229$$ 4684.64 1.35183 0.675916 0.736978i $$-0.263748\pi$$
0.675916 + 0.736978i $$0.263748\pi$$
$$230$$ 28.6174 49.5668i 0.00820424 0.0142102i
$$231$$ −1636.83 2835.08i −0.466215 0.807508i
$$232$$ 1542.76 + 2672.14i 0.436583 + 0.756184i
$$233$$ −4868.99 −1.36900 −0.684502 0.729011i $$-0.739980\pi$$
−0.684502 + 0.729011i $$0.739980\pi$$
$$234$$ −8951.82 5201.67i −2.50085 1.45318i
$$235$$ −726.137 −0.201566
$$236$$ 3316.48 + 5744.31i 0.914764 + 1.58442i
$$237$$ −163.002 282.328i −0.0446756 0.0773803i
$$238$$ 43.9460 76.1167i 0.0119689 0.0207307i
$$239$$ 4807.53 1.30114 0.650572 0.759444i $$-0.274529\pi$$
0.650572 + 0.759444i $$0.274529\pi$$
$$240$$ 29.5454 51.1740i 0.00794643 0.0137636i
$$241$$ −2937.98 + 5088.73i −0.785278 + 1.36014i 0.143555 + 0.989642i $$0.454147\pi$$
−0.928833 + 0.370499i $$0.879187\pi$$
$$242$$ −1018.12 −0.270443
$$243$$ 1172.61 2031.03i 0.309561 0.536175i
$$244$$ 1033.01 + 1789.23i 0.271033 + 0.469442i
$$245$$ 353.184 + 611.733i 0.0920984 + 0.159519i
$$246$$ −12290.0 −3.18528
$$247$$ 2447.28 1403.85i 0.630431 0.361640i
$$248$$ −2986.00 −0.764562
$$249$$ 330.691 + 572.774i 0.0841635 + 0.145775i
$$250$$ −1550.49 2685.52i −0.392245 0.679389i
$$251$$ −2903.13 + 5028.38i −0.730057 + 1.26450i 0.226802 + 0.973941i $$0.427173\pi$$
−0.956858 + 0.290554i $$0.906160\pi$$
$$252$$ 5930.02 1.48237
$$253$$ −88.0866 + 152.570i −0.0218891 + 0.0379131i
$$254$$ 1416.12 2452.79i 0.349823 0.605912i
$$255$$ 49.1385 0.0120673
$$256$$ 1920.92 3327.12i 0.468974 0.812286i
$$257$$ 597.930 + 1035.65i 0.145128 + 0.251369i 0.929421 0.369022i $$-0.120307\pi$$
−0.784293 + 0.620391i $$0.786974\pi$$
$$258$$ 8467.24 + 14665.7i 2.04321 + 3.53894i
$$259$$ −1775.66 −0.426001
$$260$$ −1462.10 + 838.716i −0.348752 + 0.200058i
$$261$$ 6812.83 1.61572
$$262$$ −3037.32 5260.79i −0.716207 1.24051i
$$263$$ −117.092 202.810i −0.0274533 0.0475505i 0.851972 0.523587i $$-0.175406\pi$$
−0.879426 + 0.476036i $$0.842073\pi$$
$$264$$ 3754.32 6502.68i 0.875237 1.51595i
$$265$$ 1720.19 0.398757
$$266$$ −1312.66 + 2273.59i −0.302572 + 0.524071i
$$267$$ −880.650 + 1525.33i −0.201854 + 0.349621i
$$268$$ −639.091 −0.145667
$$269$$ 1334.13 2310.79i 0.302393 0.523760i −0.674285 0.738471i $$-0.735548\pi$$
0.976677 + 0.214712i $$0.0688813\pi$$
$$270$$ 1191.47 + 2063.68i 0.268557 + 0.465155i
$$271$$ −2850.64 4937.45i −0.638982 1.10675i −0.985657 0.168763i $$-0.946023\pi$$
0.346675 0.937985i $$-0.387311\pi$$
$$272$$ −4.88331 −0.00108858
$$273$$ 3365.31 + 1955.50i 0.746073 + 0.433524i
$$274$$ −2837.35 −0.625587
$$275$$ 2308.56 + 3998.54i 0.506223 + 0.876804i
$$276$$ −248.532 430.471i −0.0542025 0.0938815i
$$277$$ 3576.24 6194.24i 0.775725 1.34359i −0.158662 0.987333i $$-0.550718\pi$$
0.934386 0.356261i $$-0.115949\pi$$
$$278$$ −1507.96 −0.325329
$$279$$ −3296.54 + 5709.78i −0.707380 + 1.22522i
$$280$$ 294.384 509.889i 0.0628316 0.108827i
$$281$$ −6132.87 −1.30198 −0.650990 0.759086i $$-0.725646\pi$$
−0.650990 + 0.759086i $$0.725646\pi$$
$$282$$ −5122.63 + 8872.66i −1.08173 + 1.87361i
$$283$$ −1688.58 2924.70i −0.354683 0.614330i 0.632380 0.774658i $$-0.282078\pi$$
−0.987064 + 0.160328i $$0.948745\pi$$
$$284$$ −1792.85 3105.31i −0.374599 0.648824i
$$285$$ −1467.76 −0.305061
$$286$$ 7311.53 4194.18i 1.51168 0.867157i
$$287$$ 2966.29 0.610086
$$288$$ −4515.49 7821.07i −0.923882 1.60021i
$$289$$ 2454.47 + 4251.27i 0.499587 + 0.865310i
$$290$$ 900.982 1560.55i 0.182440 0.315995i
$$291$$ −10199.0 −2.05455
$$292$$ −2995.30 + 5188.01i −0.600297 + 1.03974i
$$293$$ 2352.38 4074.45i 0.469037 0.812395i −0.530337 0.847787i $$-0.677935\pi$$
0.999374 + 0.0353917i $$0.0112679\pi$$
$$294$$ 9966.34 1.97704
$$295$$ 727.050 1259.29i 0.143493 0.248537i
$$296$$ −2036.37 3527.10i −0.399871 0.692596i
$$297$$ −3667.43 6352.18i −0.716518 1.24105i
$$298$$ 8258.86 1.60545
$$299$$ 0.583991 209.460i 0.000112953 0.0405129i
$$300$$ −13027.0 −2.50704
$$301$$ −2043.64 3539.69i −0.391341 0.677822i
$$302$$ −965.312 1671.97i −0.183932 0.318580i
$$303$$ −4215.09 + 7300.74i −0.799176 + 1.38421i
$$304$$ 145.863 0.0275192
$$305$$ 226.461 392.242i 0.0425151 0.0736384i
$$306$$ 222.559 385.484i 0.0415780 0.0720152i
$$307$$ 5130.49 0.953787 0.476894 0.878961i $$-0.341763\pi$$
0.476894 + 0.878961i $$0.341763\pi$$
$$308$$ −2413.93 + 4181.05i −0.446579 + 0.773498i
$$309$$ 8249.11 + 14287.9i 1.51869 + 2.63045i
$$310$$ 871.922 + 1510.21i 0.159748 + 0.276692i
$$311$$ 7948.94 1.44933 0.724667 0.689099i $$-0.241994\pi$$
0.724667 + 0.689099i $$0.241994\pi$$
$$312$$ −24.8902 + 8927.34i −0.00451644 + 1.61991i
$$313$$ −8521.87 −1.53893 −0.769465 0.638689i $$-0.779477\pi$$
−0.769465 + 0.638689i $$0.779477\pi$$
$$314$$ 3015.57 + 5223.12i 0.541969 + 0.938718i
$$315$$ −650.000 1125.83i −0.116265 0.201376i
$$316$$ −240.388 + 416.365i −0.0427940 + 0.0741213i
$$317$$ −6662.46 −1.18044 −0.590222 0.807241i $$-0.700960\pi$$
−0.590222 + 0.807241i $$0.700960\pi$$
$$318$$ 12135.3 21019.0i 2.13999 3.70657i
$$319$$ −2773.29 + 4803.49i −0.486754 + 0.843083i
$$320$$ −2334.23 −0.407773
$$321$$ 8278.62 14339.0i 1.43946 2.49322i
$$322$$ 97.4536 + 168.795i 0.0168661 + 0.0292129i
$$323$$ 60.6483 + 105.046i 0.0104476 + 0.0180957i
$$324$$ 3949.74 0.677253
$$325$$ −4746.38 2758.00i −0.810097 0.470726i
$$326$$ 16450.8 2.79486
$$327$$ 3890.74 + 6738.96i 0.657977 + 1.13965i
$$328$$ 3401.82 + 5892.12i 0.572665 + 0.991884i
$$329$$ 1236.39 2141.49i 0.207187 0.358858i
$$330$$ −4385.09 −0.731489
$$331$$ 1955.89 3387.69i 0.324789 0.562551i −0.656681 0.754169i $$-0.728040\pi$$
0.981470 + 0.191618i $$0.0613733\pi$$
$$332$$ 487.689 844.703i 0.0806188 0.139636i
$$333$$ −8992.61 −1.47986
$$334$$ −7789.84 + 13492.4i −1.27617 + 2.21039i
$$335$$ 70.0519 + 121.333i 0.0114249 + 0.0197885i
$$336$$ 100.614 + 174.268i 0.0163361 + 0.0282949i
$$337$$ −627.211 −0.101384 −0.0506919 0.998714i $$-0.516143\pi$$
−0.0506919 + 0.998714i $$0.516143\pi$$
$$338$$ −5059.18 + 8651.00i −0.814152 + 1.39217i
$$339$$ −2908.34 −0.465957
$$340$$ −36.2337 62.7586i −0.00577955 0.0100105i
$$341$$ −2683.84 4648.56i −0.426212 0.738221i
$$342$$ −6647.79 + 11514.3i −1.05109 + 1.82053i
$$343$$ −5685.08 −0.894943
$$344$$ 4687.40 8118.82i 0.734674 1.27249i
$$345$$ −54.4841 + 94.3693i −0.00850240 + 0.0147266i
$$346$$ −10684.2 −1.66007
$$347$$ 1911.51 3310.83i 0.295721 0.512204i −0.679431 0.733739i $$-0.737773\pi$$
0.975152 + 0.221535i $$0.0711068\pi$$
$$348$$ −7824.72 13552.8i −1.20531 2.08767i
$$349$$ −1705.33 2953.72i −0.261560 0.453035i 0.705097 0.709111i $$-0.250904\pi$$
−0.966657 + 0.256076i $$0.917570\pi$$
$$350$$ 5108.10 0.780112
$$351$$ 7540.21 + 4381.42i 1.14663 + 0.666275i
$$352$$ 7352.48 1.11332
$$353$$ 2793.82 + 4839.03i 0.421246 + 0.729620i 0.996062 0.0886632i $$-0.0282595\pi$$
−0.574815 + 0.818283i $$0.694926\pi$$
$$354$$ −10258.2 17767.6i −1.54015 2.66763i
$$355$$ −393.035 + 680.757i −0.0587609 + 0.101777i
$$356$$ 2597.49 0.386704
$$357$$ −83.6680 + 144.917i −0.0124039 + 0.0214841i
$$358$$ −1521.03 + 2634.50i −0.224550 + 0.388932i
$$359$$ 2230.14 0.327861 0.163931 0.986472i $$-0.447583\pi$$
0.163931 + 0.986472i $$0.447583\pi$$
$$360$$ 1490.87 2582.27i 0.218266 0.378049i
$$361$$ 1617.95 + 2802.37i 0.235887 + 0.408568i
$$362$$ −1598.91 2769.39i −0.232146 0.402088i
$$363$$ 1938.38 0.280272
$$364$$ 16.0037 5740.04i 0.00230446 0.826538i
$$365$$ 1313.28 0.188330
$$366$$ −3195.20 5534.25i −0.456327 0.790382i
$$367$$ 4349.57 + 7533.68i 0.618653 + 1.07154i 0.989732 + 0.142938i $$0.0456548\pi$$
−0.371078 + 0.928602i $$0.621012\pi$$
$$368$$ 5.41455 9.37828i 0.000766992 0.00132847i
$$369$$ 15022.4 2.11934
$$370$$ −1189.25 + 2059.85i −0.167098 + 0.289423i
$$371$$ −2928.97 + 5073.13i −0.409878 + 0.709929i
$$372$$ 15144.7 2.11080
$$373$$ −5482.09 + 9495.26i −0.760997 + 1.31809i 0.181340 + 0.983420i $$0.441956\pi$$
−0.942337 + 0.334665i $$0.891377\pi$$
$$374$$ 181.194 + 313.837i 0.0250517 + 0.0433908i
$$375$$ 2951.94 + 5112.91i 0.406500 + 0.704079i
$$376$$ 5671.70 0.777914
$$377$$ 18.3862 6594.57i 0.00251177 0.900895i
$$378$$ −8114.84 −1.10419
$$379$$ −6955.06 12046.5i −0.942631 1.63269i −0.760426 0.649425i $$-0.775010\pi$$
−0.182206 0.983260i $$-0.558324\pi$$
$$380$$ 1082.29 + 1874.58i 0.146106 + 0.253064i
$$381$$ −2696.12 + 4669.82i −0.362537 + 0.627932i
$$382$$ −5934.03 −0.794794
$$383$$ 247.377 428.469i 0.0330035 0.0571638i −0.849052 0.528310i $$-0.822826\pi$$
0.882055 + 0.471146i $$0.156159\pi$$
$$384$$ −9988.35 + 17300.3i −1.32738 + 2.29910i
$$385$$ 1058.38 0.140104
$$386$$ −1184.48 + 2051.59i −0.156188 + 0.270526i
$$387$$ −10349.8 17926.3i −1.35945 2.35464i
$$388$$ 7520.52 + 13025.9i 0.984011 + 1.70436i
$$389$$ −4140.47 −0.539666 −0.269833 0.962907i $$-0.586968\pi$$
−0.269833 + 0.962907i $$0.586968\pi$$
$$390$$ 4522.40 2594.22i 0.587181 0.336830i
$$391$$ 9.00524 0.00116474
$$392$$ −2758.65 4778.12i −0.355441 0.615641i
$$393$$ 5782.70 + 10015.9i 0.742236 + 1.28559i
$$394$$ 7118.41 12329.5i 0.910204 1.57652i
$$395$$ 105.398 0.0134256
$$396$$ −12225.0 + 21174.4i −1.55134 + 2.68700i
$$397$$ 940.896 1629.68i 0.118948 0.206023i −0.800403 0.599462i $$-0.795381\pi$$
0.919351 + 0.393439i $$0.128715\pi$$
$$398$$ −5642.90 −0.710686
$$399$$ 2499.15 4328.65i 0.313568 0.543116i
$$400$$ −141.904 245.784i −0.0177380 0.0307231i
$$401$$ −210.883 365.259i −0.0262618 0.0454867i 0.852596 0.522571i $$-0.175027\pi$$
−0.878858 + 0.477084i $$0.841694\pi$$
$$402$$ 1976.76 0.245254
$$403$$ 5517.96 + 3206.34i 0.682058 + 0.396326i
$$404$$ 12432.5 1.53103
$$405$$ −432.938 749.871i −0.0531182 0.0920034i
$$406$$ 3068.20 + 5314.28i 0.375055 + 0.649615i
$$407$$ 3660.62 6340.37i 0.445823 0.772188i
$$408$$ −383.811 −0.0465722
$$409$$ −1275.11 + 2208.55i −0.154157 + 0.267007i −0.932752 0.360520i $$-0.882599\pi$$
0.778595 + 0.627527i $$0.215933\pi$$
$$410$$ 1986.68 3441.04i 0.239306 0.414489i
$$411$$ 5401.99 0.648322
$$412$$ 12165.4 21071.2i 1.45473 2.51966i
$$413$$ 2475.89 + 4288.37i 0.294990 + 0.510937i
$$414$$ 493.542 + 854.839i 0.0585900 + 0.101481i
$$415$$ −213.826 −0.0252923
$$416$$ −7582.69 + 4349.73i −0.893683 + 0.512651i
$$417$$ 2870.98 0.337152
$$418$$ −5412.23 9374.25i −0.633303 1.09691i
$$419$$ −6192.41 10725.6i −0.722002 1.25054i −0.960196 0.279327i $$-0.909889\pi$$
0.238194 0.971218i $$-0.423445\pi$$
$$420$$ −1493.09 + 2586.10i −0.173465 + 0.300450i
$$421$$ 10463.0 1.21124 0.605622 0.795752i $$-0.292924\pi$$
0.605622 + 0.795752i $$0.292924\pi$$
$$422$$ −5774.17 + 10001.2i −0.666071 + 1.15367i
$$423$$ 6261.55 10845.3i 0.719733 1.24661i
$$424$$ −13436.1 −1.53895
$$425$$ 118.004 204.389i 0.0134683 0.0233278i
$$426$$ 5545.44 + 9604.99i 0.630698 + 1.09240i
$$427$$ 771.190 + 1335.74i 0.0874016 + 0.151384i
$$428$$ −24417.9 −2.75767
$$429$$ −13920.3 + 7985.22i −1.56661 + 0.898671i
$$430$$ −5474.94 −0.614012
$$431$$ 1981.19 + 3431.53i 0.221417 + 0.383506i 0.955238 0.295837i $$-0.0955985\pi$$
−0.733821 + 0.679342i $$0.762265\pi$$
$$432$$ 225.432 + 390.459i 0.0251067 + 0.0434860i
$$433$$ 4197.07 7269.54i 0.465816 0.806817i −0.533422 0.845849i $$-0.679094\pi$$
0.999238 + 0.0390321i $$0.0124275\pi$$
$$434$$ −5938.48 −0.656812
$$435$$ −1715.36 + 2971.10i −0.189070 + 0.327479i
$$436$$ 5737.90 9938.34i 0.630265 1.09165i
$$437$$ −268.984 −0.0294446
$$438$$ 9264.72 16047.0i 1.01070 1.75058i
$$439$$ −5087.26 8811.39i −0.553079 0.957960i −0.998050 0.0624156i $$-0.980120\pi$$
0.444972 0.895545i $$-0.353214\pi$$
$$440$$ 1213.78 + 2102.33i 0.131510 + 0.227783i
$$441$$ −12182.2 −1.31543
$$442$$ −372.534 216.470i −0.0400896 0.0232950i
$$443$$ −5880.74 −0.630705 −0.315353 0.948975i $$-0.602123\pi$$
−0.315353 + 0.948975i $$0.602123\pi$$
$$444$$ 10328.3 + 17889.1i 1.10396 + 1.91211i
$$445$$ −284.716 493.142i −0.0303299 0.0525330i
$$446$$ −2726.74 + 4722.85i −0.289495 + 0.501420i
$$447$$ −15723.9 −1.66379
$$448$$ 3974.49 6884.01i 0.419145 0.725980i
$$449$$ −5332.43 + 9236.05i −0.560475 + 0.970771i 0.436980 + 0.899471i $$0.356048\pi$$
−0.997455 + 0.0712996i $$0.977285\pi$$
$$450$$ 25869.3 2.70998
$$451$$ −6115.16 + 10591.8i −0.638474 + 1.10587i
$$452$$ 2144.55 + 3714.47i 0.223166 + 0.386535i
$$453$$ 1837.84 + 3183.23i 0.190617 + 0.330158i
$$454$$ 3964.87 0.409869
$$455$$ −1091.52 + 626.138i −0.112464 + 0.0645138i
$$456$$ 11464.3 1.17734
$$457$$ 7414.43 + 12842.2i 0.758933 + 1.31451i 0.943395 + 0.331671i $$0.107612\pi$$
−0.184462 + 0.982840i $$0.559054\pi$$
$$458$$ 10684.6 + 18506.3i 1.09009 + 1.88808i
$$459$$ −187.464 + 324.697i −0.0190633 + 0.0330186i
$$460$$ 160.702 0.0162886
$$461$$ 4855.85 8410.58i 0.490585 0.849717i −0.509357 0.860555i $$-0.670117\pi$$
0.999941 + 0.0108381i $$0.00344995\pi$$
$$462$$ 7466.49 12932.3i 0.751889 1.30231i
$$463$$ 11353.5 1.13962 0.569809 0.821777i $$-0.307017\pi$$
0.569809 + 0.821777i $$0.307017\pi$$
$$464$$ 170.470 295.263i 0.0170558 0.0295415i
$$465$$ −1660.04 2875.27i −0.165554 0.286747i
$$466$$ −11105.1 19234.6i −1.10393 1.91207i
$$467$$ 6451.31 0.639252 0.319626 0.947544i $$-0.396443\pi$$
0.319626 + 0.947544i $$0.396443\pi$$
$$468$$ 81.0489 29069.7i 0.00800531 2.87126i
$$469$$ −477.109 −0.0469741
$$470$$ −1656.16 2868.55i −0.162538 0.281524i
$$471$$ −5741.29 9944.20i −0.561666 0.972833i
$$472$$ −5678.84 + 9836.04i −0.553792 + 0.959196i
$$473$$ 16852.3 1.63820
$$474$$ 743.542 1287.85i 0.0720506 0.124795i
$$475$$ −3524.75 + 6105.05i −0.340477 + 0.589724i
$$476$$ 246.780 0.0237629
$$477$$ −14833.4 + 25692.2i −1.42385 + 2.46618i
$$478$$ 10964.9 + 18991.8i 1.04921 + 1.81729i
$$479$$ 4783.23 + 8284.79i 0.456266 + 0.790275i 0.998760 0.0497842i $$-0.0158533\pi$$
−0.542494 + 0.840059i $$0.682520\pi$$
$$480$$ 4547.73 0.432447
$$481$$ −24.2689 + 8704.52i −0.00230056 + 0.825139i
$$482$$ −26803.5 −2.53292
$$483$$ −185.540 321.365i −0.0174790 0.0302746i
$$484$$ −1429.32 2475.66i −0.134234 0.232500i
$$485$$ 1648.67 2855.59i 0.154356 0.267352i
$$486$$ 10697.9 0.998489
$$487$$ −2458.56 + 4258.35i −0.228764 + 0.396230i −0.957442 0.288626i $$-0.906802\pi$$
0.728678 + 0.684856i $$0.240135\pi$$
$$488$$ −1768.84 + 3063.72i −0.164081 + 0.284197i
$$489$$ −31320.3 −2.89643
$$490$$ −1611.07 + 2790.45i −0.148532 + 0.257265i
$$491$$ −1475.41 2555.49i −0.135610 0.234883i 0.790220 0.612823i $$-0.209966\pi$$
−0.925830 + 0.377940i $$0.876633\pi$$
$$492$$ −17253.7 29884.2i −1.58101 2.73838i
$$493$$ 283.519 0.0259007
$$494$$ 11127.5 + 6465.90i 1.01346 + 0.588896i
$$495$$ 5360.04 0.486699
$$496$$ 164.972 + 285.740i 0.0149344 + 0.0258671i
$$497$$ −1338.44 2318.25i −0.120799 0.209231i
$$498$$ −1508.47 + 2612.74i −0.135735 + 0.235100i
$$499$$ 13430.1 1.20484 0.602418 0.798180i $$-0.294204\pi$$
0.602418 + 0.798180i $$0.294204\pi$$
$$500$$ 4353.40 7540.30i 0.389380 0.674425i
$$501$$ 14830.9 25687.9i 1.32255 2.29072i
$$502$$ −26485.6 −2.35480
$$503$$ −660.143 + 1143.40i −0.0585175 + 0.101355i −0.893800 0.448466i $$-0.851971\pi$$
0.835283 + 0.549821i $$0.185304\pi$$
$$504$$ 5077.02 + 8793.65i 0.448707 + 0.777183i
$$505$$ −1362.74 2360.34i −0.120082 0.207988i
$$506$$ −803.623 −0.0706036
$$507$$ 9632.09 16470.5i 0.843740 1.44276i
$$508$$ 7952.25 0.694536
$$509$$ −10458.2 18114.2i −0.910713 1.57740i −0.813060 0.582180i $$-0.802200\pi$$
−0.0976524 0.995221i $$-0.531133\pi$$
$$510$$ 112.074 + 194.118i 0.00973082 + 0.0168543i
$$511$$ −2236.12 + 3873.08i −0.193582 + 0.335293i
$$512$$ −877.105 −0.0757089
$$513$$ 5599.50 9698.62i 0.481918 0.834707i
$$514$$ −2727.49 + 4724.15i −0.234055 + 0.405396i
$$515$$ −5333.90 −0.456388
$$516$$ −23774.0 + 41177.8i −2.02828 + 3.51308i
$$517$$ 5097.77 + 8829.60i 0.433655 + 0.751113i
$$518$$ −4049.88 7014.60i −0.343517 0.594988i
$$519$$ 20341.4 1.72040
$$520$$ −2495.52 1450.08i −0.210453 0.122289i
$$521$$ −10104.2 −0.849661 −0.424831 0.905273i $$-0.639666\pi$$
−0.424831 + 0.905273i $$0.639666\pi$$
$$522$$ 15538.5 + 26913.5i 1.30288 + 2.25665i
$$523$$ −3565.61 6175.82i −0.298113 0.516347i 0.677591 0.735439i $$-0.263024\pi$$
−0.975704 + 0.219092i $$0.929691\pi$$
$$524$$ 8528.08 14771.1i 0.710975 1.23144i
$$525$$ −9725.21 −0.808463
$$526$$ 534.122 925.127i 0.0442753 0.0766871i
$$527$$ −137.187 + 237.615i −0.0113396 + 0.0196407i
$$528$$ −829.682 −0.0683849
$$529$$ 6073.52 10519.6i 0.499179 0.864604i
$$530$$ 3923.38 + 6795.49i 0.321548 + 0.556938i
$$531$$ 12538.9 + 21717.9i 1.02475 + 1.77491i
$$532$$ −7371.27 −0.600724
$$533$$ 40.5420 14541.1i 0.00329469 1.18170i
$$534$$ −8034.26 −0.651080
$$535$$ 2676.49 + 4635.82i 0.216289 + 0.374624i
$$536$$ −547.161 947.710i −0.0440928 0.0763710i
$$537$$ 2895.86 5015.78i 0.232711 0.403067i
$$538$$ 12171.5 0.975369
$$539$$ 4958.99 8589.22i 0.396287 0.686390i
$$540$$ −3345.36 + 5794.33i −0.266595 + 0.461756i
$$541$$ 16831.7 1.33762 0.668809 0.743435i $$-0.266805\pi$$
0.668809 + 0.743435i $$0.266805\pi$$
$$542$$ 13003.3 22522.5i 1.03052 1.78491i
$$543$$ 3044.13 + 5272.59i 0.240582 + 0.416701i
$$544$$ −187.914 325.477i −0.0148102 0.0256520i
$$545$$ −2515.77 −0.197731
$$546$$ −49.5009 + 17754.4i −0.00387993 + 1.39161i
$$547$$ −9560.55 −0.747312 −0.373656 0.927567i $$-0.621896\pi$$
−0.373656 + 0.927567i $$0.621896\pi$$
$$548$$ −3983.31 6899.30i −0.310508 0.537816i
$$549$$ 3905.59 + 6764.69i 0.303619 + 0.525883i
$$550$$ −10530.6 + 18239.6i −0.816412 + 1.41407i
$$551$$ −8468.64 −0.654766
$$552$$ 425.564 737.099i 0.0328138 0.0568352i
$$553$$ −179.460 + 310.834i −0.0138000 + 0.0239024i
$$554$$ 32626.5 2.50210
$$555$$ 2264.20 3921.71i 0.173171 0.299941i
$$556$$ −2117.00 3666.75i −0.161476 0.279685i
$$557$$ 11414.0 + 19769.5i 0.868267 + 1.50388i 0.863766 + 0.503893i $$0.168099\pi$$
0.00450060 + 0.999990i $$0.498567\pi$$
$$558$$ −30074.7 −2.28166
$$559$$ −17380.0 + 9969.82i −1.31502 + 0.754344i
$$560$$ −65.0571 −0.00490922
$$561$$ −344.972 597.509i −0.0259621 0.0449677i
$$562$$ −13987.7 24227.4i −1.04989 1.81846i
$$563$$ −10814.9 + 18731.9i −0.809578 + 1.40223i 0.103579 + 0.994621i $$0.466971\pi$$
−0.913157 + 0.407609i $$0.866363\pi$$
$$564$$ −28766.3 −2.14766
$$565$$ 470.136 814.299i 0.0350066 0.0606333i
$$566$$ 7702.53 13341.2i 0.572016 0.990761i
$$567$$ 2948.65 0.218398
$$568$$ 3069.92 5317.25i 0.226780 0.392794i
$$569$$ 5294.93 + 9171.09i 0.390114 + 0.675698i 0.992464 0.122534i $$-0.0391022\pi$$
−0.602350 + 0.798232i $$0.705769\pi$$
$$570$$ −3347.62 5798.25i −0.245994 0.426074i
$$571$$ −1757.27 −0.128791 −0.0643954 0.997924i $$-0.520512\pi$$
−0.0643954 + 0.997924i $$0.520512\pi$$
$$572$$ 20463.1 + 11890.5i 1.49581 + 0.869176i
$$573$$ 11297.7 0.823679
$$574$$ 6765.45 + 11718.1i 0.491959 + 0.852097i
$$575$$ 261.683 + 453.247i 0.0189790 + 0.0328726i
$$576$$ 20128.3 34863.2i 1.45604 2.52193i
$$577$$ −13580.6 −0.979840 −0.489920 0.871767i $$-0.662974\pi$$
−0.489920 + 0.871767i $$0.662974\pi$$
$$578$$ −11196.2 + 19392.4i −0.805710 + 1.39553i
$$579$$ 2255.12 3905.98i 0.161864 0.280357i
$$580$$ 5059.49 0.362214
$$581$$ 364.081 630.607i 0.0259977 0.0450293i
$$582$$ −23261.6 40290.3i −1.65674 2.86956i
$$583$$ −12076.5 20917.0i −0.857900 1.48593i
$$584$$ −10257.8 −0.726831
$$585$$ −5527.86 + 3171.00i −0.390682 + 0.224110i
$$586$$ 21461.0 1.51288
$$587$$ 478.663 + 829.068i 0.0336568 + 0.0582952i 0.882363 0.470569i $$-0.155951\pi$$
−0.848706 + 0.528864i $$0.822618\pi$$
$$588$$ 13991.6 + 24234.1i 0.981297 + 1.69966i
$$589$$ 4097.75 7097.50i 0.286663 0.496515i
$$590$$ 6632.95 0.462838
$$591$$ −13552.6 + 23473.8i −0.943283 + 1.63381i
$$592$$ −225.013 + 389.734i −0.0156216 + 0.0270573i
$$593$$ 6729.49 0.466015 0.233007 0.972475i $$-0.425143\pi$$
0.233007 + 0.972475i $$0.425143\pi$$
$$594$$ 16729.2 28975.8i 1.15557 2.00150i
$$595$$ −27.0500 46.8520i −0.00186377 0.00322814i
$$596$$ 11594.5 + 20082.2i 0.796859 + 1.38020i
$$597$$ 10743.4 0.736514
$$598$$ 828.785 475.423i 0.0566748 0.0325109i
$$599$$ 2281.52 0.155626 0.0778132 0.996968i $$-0.475206\pi$$
0.0778132 + 0.996968i $$0.475206\pi$$
$$600$$ −11153.1 19317.8i −0.758874 1.31441i
$$601$$ −3200.71 5543.79i −0.217237 0.376266i 0.736725 0.676192i $$-0.236371\pi$$
−0.953962 + 0.299926i $$0.903038\pi$$
$$602$$ 9322.18 16146.5i 0.631136 1.09316i
$$603$$ −2416.26 −0.163180
$$604$$ 2710.37 4694.50i 0.182588 0.316252i
$$605$$ −313.341 + 542.722i −0.0210564 + 0.0364707i
$$606$$ −38454.7 −2.57775
$$607$$ −1389.62 + 2406.89i −0.0929207 + 0.160943i −0.908739 0.417365i $$-0.862954\pi$$
0.815818 + 0.578308i $$0.196287\pi$$
$$608$$ 5612.95 + 9721.92i 0.374400 + 0.648480i
$$609$$ −5841.50 10117.8i −0.388685 0.673223i
$$610$$ 2066.03 0.137133
$$611$$ −10481.0 6090.22i −0.693969 0.403247i
$$612$$ 1249.79 0.0825485
$$613$$ −11310.4 19590.2i −0.745226 1.29077i −0.950089 0.311979i $$-0.899008\pi$$
0.204863 0.978791i $$-0.434325\pi$$
$$614$$ 11701.5 + 20267.6i 0.769111 + 1.33214i
$$615$$ −3782.41 + 6551.33i −0.248002 + 0.429553i
$$616$$ −8266.80 −0.540712
$$617$$ −10987.0 + 19030.1i −0.716889 + 1.24169i 0.245337 + 0.969438i $$0.421101\pi$$
−0.962226 + 0.272250i $$0.912232\pi$$
$$618$$ −37628.7 + 65174.9i −2.44927 + 4.24226i
$$619$$ 7145.19 0.463957 0.231979 0.972721i $$-0.425480\pi$$
0.231979 + 0.972721i $$0.425480\pi$$
$$620$$ −2448.15 + 4240.32i −0.158581 + 0.274670i
$$621$$ −415.715 720.040i −0.0268632 0.0465285i
$$622$$ 18129.8 + 31401.7i 1.16871 + 2.02426i
$$623$$ 1939.14 0.124703
$$624$$ 855.660 490.840i 0.0548939 0.0314893i
$$625$$ 12730.8 0.814773
$$626$$ −19436.5 33665.0i −1.24096 2.14940i
$$627$$ 10304.2 + 17847.5i 0.656319 + 1.13678i
$$628$$ −8467.00 + 14665.3i −0.538010 + 0.931861i
$$629$$ −374.231 −0.0237227
$$630$$ 2965.01 5135.55i 0.187506 0.324770i
$$631$$ 9441.62 16353.4i 0.595666 1.03172i −0.397787 0.917478i $$-0.630222\pi$$
0.993453 0.114245i $$-0.0364450\pi$$
$$632$$ −823.239 −0.0518144
$$633$$ 10993.3 19041.0i 0.690278 1.19560i
$$634$$ −15195.6 26319.5i −0.951882 1.64871i
$$635$$ −871.661 1509.76i −0.0544737 0.0943512i
$$636$$ 68146.4 4.24871
$$637$$ −32.8768 + 11791.9i −0.00204494 + 0.733457i
$$638$$ −25301.1 −1.57003
$$639$$ −6778.37 11740.5i −0.419637 0.726833i
$$640$$ −3229.25 5593.22i −0.199449 0.345456i
$$641$$ 1815.54 3144.61i 0.111871 0.193767i −0.804653 0.593745i $$-0.797649\pi$$
0.916525 + 0.399978i $$0.130982\pi$$
$$642$$ 75526.7 4.64299
$$643$$ 5385.98 9328.78i 0.330330 0.572148i −0.652247 0.758007i $$-0.726173\pi$$
0.982576 + 0.185859i $$0.0595067\pi$$
$$644$$ −273.627 + 473.935i −0.0167429 + 0.0289995i
$$645$$ 10423.6 0.636327
$$646$$ −276.651 + 479.173i −0.0168493 + 0.0291839i
$$647$$ −7574.14 13118.8i −0.460232 0.797146i 0.538740 0.842472i $$-0.318901\pi$$
−0.998972 + 0.0453265i $$0.985567\pi$$
$$648$$ 3381.59 + 5857.09i 0.205002 + 0.355074i
$$649$$ −20416.7 −1.23487
$$650$$ 69.8152 25040.6i 0.00421289 1.51103i
$$651$$ 11306.2 0.680682
$$652$$ 23094.9 + 40001.6i 1.38722 + 2.40273i
$$653$$ −3679.45 6372.99i −0.220502 0.381921i 0.734458 0.678654i $$-0.237436\pi$$
−0.954961 + 0.296733i $$0.904103\pi$$
$$654$$ −17747.8 + 30740.1i −1.06115 + 1.83797i
$$655$$ −3739.11 −0.223052
$$656$$ 375.890 651.061i 0.0223720 0.0387495i
$$657$$ −11324.6 + 19614.7i −0.672471 + 1.16475i
$$658$$ 11279.7 0.668282
$$659$$ −14166.6 + 24537.3i −0.837411 + 1.45044i 0.0546414 + 0.998506i $$0.482598\pi$$
−0.892052 + 0.451932i $$0.850735\pi$$
$$660$$ −6156.16 10662.8i −0.363073 0.628860i
$$661$$ −554.842 961.014i −0.0326488 0.0565493i 0.849239 0.528008i $$-0.177061\pi$$
−0.881888 + 0.471459i $$0.843728\pi$$
$$662$$ 17843.8 1.04761
$$663$$ 709.260 + 412.132i 0.0415466 + 0.0241416i
$$664$$ 1670.15 0.0976121
$$665$$ 807.978 + 1399.46i 0.0471159 + 0.0816071i
$$666$$ −20510.1 35524.6i −1.19332 2.06689i
$$667$$ −314.362 + 544.491i −0.0182491 + 0.0316083i
$$668$$ −43744.1 −2.53369
$$669$$ 5191.39 8991.75i 0.300016 0.519643i
$$670$$ −319.545 + 553.469i −0.0184255 + 0.0319140i
$$671$$ −6359.39 −0.365874
$$672$$ −7743.41 + 13412.0i −0.444507 + 0.769908i
$$673$$ −10489.5 18168.4i −0.600806 1.04063i −0.992699 0.120616i $$-0.961513\pi$$
0.391893 0.920011i $$-0.371820\pi$$
$$674$$ −1430.53 2477.75i −0.0817535 0.141601i
$$675$$ −21790.0 −1.24251
$$676$$ −28138.2 156.905i −1.60095 0.00892722i
$$677$$ 30941.9 1.75656 0.878282 0.478142i $$-0.158690\pi$$
0.878282 + 0.478142i $$0.158690\pi$$
$$678$$ −6633.27 11489.2i −0.375736 0.650795i
$$679$$ 5614.39 + 9724.41i 0.317320 + 0.549615i
$$680$$ 62.0433 107.462i 0.00349890 0.00606027i
$$681$$ −7548.64 −0.424764
$$682$$ 12242.5 21204.6i 0.687375 1.19057i
$$683$$ −2713.11 + 4699.24i −0.151997 + 0.263267i −0.931962 0.362557i $$-0.881904\pi$$
0.779964 + 0.625824i $$0.215237\pi$$
$$684$$ −37330.9 −2.08682
$$685$$ −873.236 + 1512.49i −0.0487075 + 0.0843638i
$$686$$ −12966.4 22458.4i −0.721660 1.24995i
$$687$$ −20342.2 35233.8i −1.12970 1.95670i
$$688$$ −1035.89 −0.0574023
$$689$$ 24829.1 + 14427.5i 1.37288 + 0.797744i
$$690$$ −497.065 −0.0274245
$$691$$ 16896.3 + 29265.3i 0.930199 + 1.61115i 0.782979 + 0.622048i $$0.213699\pi$$
0.147219 + 0.989104i $$0.452968\pi$$
$$692$$ −14999.3 25979.6i −0.823973 1.42716i
$$693$$ −9126.53 + 15807.6i −0.500272 + 0.866496i
$$694$$ 17438.9 0.953849
$$695$$ −464.096 + 803.838i −0.0253297 + 0.0438724i
$$696$$ 13398.4 23206.6i 0.729689 1.26386i
$$697$$ 625.164 0.0339738
$$698$$ 7778.97 13473.6i 0.421831 0.730633i
$$699$$ 21142.8 + 36620.3i 1.14405 + 1.98156i
$$700$$ 7171.16 + 12420.8i 0.387206 + 0.670661i
$$701$$ 6905.96 0.372089 0.186045 0.982541i $$-0.440433\pi$$
0.186045 + 0.982541i $$0.440433\pi$$
$$702$$ −110.910 + 39780.0i −0.00596301 + 2.13875i
$$703$$ 11178.2 0.599707
$$704$$ 16387.2 + 28383.5i 0.877297 + 1.51952i
$$705$$ 3153.12 + 5461.37i 0.168445 + 0.291755i
$$706$$ −12744.1 + 22073.5i −0.679366 + 1.17670i
$$707$$ 9281.37 0.493723
$$708$$ 28802.5 49887.3i 1.52890 2.64814i
$$709$$ 1003.56 1738.22i 0.0531589 0.0920739i −0.838221 0.545330i $$-0.816404\pi$$
0.891380 + 0.453256i $$0.149738\pi$$
$$710$$ −3585.70 −0.189534
$$711$$ −908.854 + 1574.18i −0.0479391 + 0.0830329i
$$712$$ 2223.85 + 3851.83i 0.117054 + 0.202744i
$$713$$ −304.222 526.929i −0.0159793 0.0276769i
$$714$$ −763.312 −0.0400088
$$715$$ 14.4655 5188.32i 0.000756613 0.271374i
$$716$$ −8541.38 −0.445819
$$717$$ −20875.9 36158.1i −1.08734 1.88333i
$$718$$ 5086.44 + 8809.98i 0.264379 + 0.457918i
$$719$$ 6393.72 11074.3i 0.331635 0.574409i −0.651198 0.758908i $$-0.725733\pi$$
0.982833 + 0.184499i $$0.0590664\pi$$
$$720$$ −329.474 −0.0170538
$$721$$ 9082.03 15730.5i 0.469116 0.812532i
$$722$$ −7380.35 + 12783.1i −0.380427 + 0.658919i
$$723$$ 51030.7 2.62497
$$724$$ 4489.36 7775.80i 0.230450 0.399151i
$$725$$ 8238.74 + 14269.9i 0.422040 + 0.730995i
$$726$$ 4421.01 + 7657.42i 0.226004 + 0.391451i
$$727$$ −6090.70 −0.310717 −0.155359 0.987858i $$-0.549653\pi$$
−0.155359 + 0.987858i $$0.549653\pi$$
$$728$$ 8525.64 4890.64i 0.434040 0.248982i
$$729$$ −28693.9 −1.45780
$$730$$ 2995.30 + 5188.01i 0.151864 + 0.263037i
$$731$$ −430.710 746.011i −0.0217926 0.0377459i
$$732$$ 8971.37 15538.9i 0.452994 0.784608i
$$733$$ −38846.5 −1.95747 −0.978737 0.205117i $$-0.934243\pi$$
−0.978737 + 0.205117i $$0.934243\pi$$
$$734$$ −19840.8 + 34365.3i −0.997735 + 1.72813i
$$735$$ 3067.28 5312.69i 0.153930 0.266614i
$$736$$ 833.427 0.0417399
$$737$$ 983.585 1703.62i 0.0491599 0.0851474i
$$738$$ 34262.8 + 59344.8i 1.70898 + 2.96005i
$$739$$ −7228.77 12520.6i −0.359830 0.623245i 0.628102 0.778131i $$-0.283832\pi$$
−0.987932 + 0.154887i $$0.950499\pi$$
$$740$$ −6678.29 −0.331755
$$741$$ −21185.4 12310.3i −1.05029 0.610297i
$$742$$ −26721.3 −1.32206
$$743$$ 638.901 + 1106.61i 0.0315464 + 0.0546400i 0.881368 0.472431i $$-0.156623\pi$$
−0.849821 + 0.527071i $$0.823290\pi$$
$$744$$ 12966.2 + 22458.1i 0.638931 + 1.10666i
$$745$$ 2541.78 4402.49i 0.124998 0.216503i
$$746$$ −50013.7 −2.45460
$$747$$ 1843.84 3193.63i 0.0903116 0.156424i
$$748$$ −508.750 + 881.181i −0.0248687 + 0.0430738i
$$749$$ −18229.0 −0.889285
$$750$$ −13465.4 + 23322.8i −0.655584 + 1.13551i
$$751$$ 6503.93 + 11265.1i 0.316021 + 0.547364i 0.979654 0.200694i $$-0.0643197\pi$$
−0.663633 + 0.748058i $$0.730986\pi$$
$$752$$ −313.353 542.743i −0.0151952 0.0263189i
$$753$$ 50425.5 2.44038
$$754$$ 26093.3 14968.1i 1.26029 0.722952i
$$755$$ −1188.35 −0.0572829
$$756$$ −11392.3 19732.0i −0.548060 0.949268i
$$757$$ 5361.61 + 9286.57i 0.257425 + 0.445874i 0.965551 0.260212i $$-0.0837926\pi$$
−0.708126 + 0.706086i $$0.750459\pi$$
$$758$$ 31725.9 54950.8i 1.52023 2.63312i
$$759$$ 1530.00 0.0731694
$$760$$ −1853.22 + 3209.87i −0.0884518 + 0.153203i
$$761$$ −6810.90 + 11796.8i −0.324435 + 0.561938i −0.981398 0.191985i $$-0.938508\pi$$
0.656963 + 0.753923i $$0.271841\pi$$
$$762$$ −24597.0 −1.16936
$$763$$ 4283.59 7419.40i 0.203246 0.352032i
$$764$$ −8330.68 14429.2i −0.394494 0.683284i
$$765$$ −136.991 237.276i −0.00647443 0.0112140i
$$766$$ 2256.84 0.106453
$$767$$ 21056.0 12078.5i 0.991250 0.568619i
$$768$$ −33365.0 −1.56765
$$769$$ 4247.57 + 7357.01i 0.199183 + 0.344994i 0.948264 0.317484i $$-0.102838\pi$$
−0.749081 + 0.662478i $$0.769505\pi$$
$$770$$ 2413.93 +