Properties

Label 13.4.c.a
Level $13$
Weight $4$
Character orbit 13.c
Analytic conductor $0.767$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,4,Mod(3,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 13.c (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.767024830075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \zeta_{6} - 4) q^{2} + (2 \zeta_{6} - 2) q^{3} - 8 \zeta_{6} q^{4} + 17 q^{5} - 8 \zeta_{6} q^{6} - 20 \zeta_{6} q^{7} + 23 \zeta_{6} q^{9} + (68 \zeta_{6} - 68) q^{10} + ( - 32 \zeta_{6} + 32) q^{11} + \cdots + 736 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 2 q^{3} - 8 q^{4} + 34 q^{5} - 8 q^{6} - 20 q^{7} + 23 q^{9} - 68 q^{10} + 32 q^{11} + 32 q^{12} - 91 q^{13} + 160 q^{14} - 34 q^{15} + 64 q^{16} + 13 q^{17} - 184 q^{18} - 30 q^{19} - 136 q^{20}+ \cdots + 1472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0.500000 0.866025i
0.500000 + 0.866025i
−2.00000 3.46410i −1.00000 1.73205i −4.00000 + 6.92820i 17.0000 −4.00000 + 6.92820i −10.0000 + 17.3205i 0 11.5000 19.9186i −34.0000 58.8897i
9.1 −2.00000 + 3.46410i −1.00000 + 1.73205i −4.00000 6.92820i 17.0000 −4.00000 6.92820i −10.0000 17.3205i 0 11.5000 + 19.9186i −34.0000 + 58.8897i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.4.c.a 2
3.b odd 2 1 117.4.g.c 2
4.b odd 2 1 208.4.i.b 2
13.b even 2 1 169.4.c.d 2
13.c even 3 1 inner 13.4.c.a 2
13.c even 3 1 169.4.a.d 1
13.d odd 4 2 169.4.e.c 4
13.e even 6 1 169.4.a.a 1
13.e even 6 1 169.4.c.d 2
13.f odd 12 2 169.4.b.c 2
13.f odd 12 2 169.4.e.c 4
39.h odd 6 1 1521.4.a.k 1
39.i odd 6 1 117.4.g.c 2
39.i odd 6 1 1521.4.a.b 1
52.j odd 6 1 208.4.i.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.c.a 2 1.a even 1 1 trivial
13.4.c.a 2 13.c even 3 1 inner
117.4.g.c 2 3.b odd 2 1
117.4.g.c 2 39.i odd 6 1
169.4.a.a 1 13.e even 6 1
169.4.a.d 1 13.c even 3 1
169.4.b.c 2 13.f odd 12 2
169.4.c.d 2 13.b even 2 1
169.4.c.d 2 13.e even 6 1
169.4.e.c 4 13.d odd 4 2
169.4.e.c 4 13.f odd 12 2
208.4.i.b 2 4.b odd 2 1
208.4.i.b 2 52.j odd 6 1
1521.4.a.b 1 39.i odd 6 1
1521.4.a.k 1 39.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 4T_{2} + 16 \) acting on \(S_{4}^{\mathrm{new}}(13, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$5$ \( (T - 17)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 20T + 400 \) Copy content Toggle raw display
$11$ \( T^{2} - 32T + 1024 \) Copy content Toggle raw display
$13$ \( T^{2} + 91T + 2197 \) Copy content Toggle raw display
$17$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$19$ \( T^{2} + 30T + 900 \) Copy content Toggle raw display
$23$ \( T^{2} + 78T + 6084 \) Copy content Toggle raw display
$29$ \( T^{2} + 197T + 38809 \) Copy content Toggle raw display
$31$ \( (T + 74)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 227T + 51529 \) Copy content Toggle raw display
$41$ \( T^{2} - 165T + 27225 \) Copy content Toggle raw display
$43$ \( T^{2} - 156T + 24336 \) Copy content Toggle raw display
$47$ \( (T + 162)^{2} \) Copy content Toggle raw display
$53$ \( (T - 93)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 864T + 746496 \) Copy content Toggle raw display
$61$ \( T^{2} + 145T + 21025 \) Copy content Toggle raw display
$67$ \( T^{2} + 862T + 743044 \) Copy content Toggle raw display
$71$ \( T^{2} + 654T + 427716 \) Copy content Toggle raw display
$73$ \( (T - 215)^{2} \) Copy content Toggle raw display
$79$ \( (T + 76)^{2} \) Copy content Toggle raw display
$83$ \( (T - 628)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 266T + 70756 \) Copy content Toggle raw display
$97$ \( T^{2} + 238T + 56644 \) Copy content Toggle raw display
show more
show less