Properties

Label 13.3.f.a
Level 1313
Weight 33
Character orbit 13.f
Analytic conductor 0.3540.354
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,3,Mod(2,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 13 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 13.f (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3542243436680.354224343668
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ1221)q2+(ζ123ζ122+ζ12)q3+(ζ1222ζ121)q4+(3ζ123ζ122+3)q5++(26ζ123+52ζ122++26)q99+O(q100) q + ( - \zeta_{12}^{3} + \zeta_{12}^{2} - 1) q^{2} + (\zeta_{12}^{3} - \zeta_{12}^{2} + \zeta_{12}) q^{3} + ( - \zeta_{12}^{2} - 2 \zeta_{12} - 1) q^{4} + (3 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 3) q^{5}+ \cdots + (26 \zeta_{12}^{3} + 52 \zeta_{12}^{2} + \cdots + 26) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q22q36q414q5+10q6+16q76q8+10q9+24q10+4q1126q1340q1414q152q1612q172q18+10q19+26q20++208q99+O(q100) 4 q - 2 q^{2} - 2 q^{3} - 6 q^{4} - 14 q^{5} + 10 q^{6} + 16 q^{7} - 6 q^{8} + 10 q^{9} + 24 q^{10} + 4 q^{11} - 26 q^{13} - 40 q^{14} - 14 q^{15} - 2 q^{16} - 12 q^{17} - 2 q^{18} + 10 q^{19} + 26 q^{20}+ \cdots + 208 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/13Z)×\left(\mathbb{Z}/13\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2.1
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.500000 0.133975i 0.366025 + 0.633975i −3.23205 1.86603i −2.63397 + 2.63397i −0.0980762 0.366025i 5.73205 1.53590i 2.83013 + 2.83013i 4.23205 7.33013i 1.66987 0.964102i
6.1 −0.500000 1.86603i −1.36603 + 2.36603i 0.232051 0.133975i −4.36603 + 4.36603i 5.09808 + 1.36603i 2.26795 8.46410i −5.83013 5.83013i 0.767949 + 1.33013i 10.3301 + 5.96410i
7.1 −0.500000 + 0.133975i 0.366025 0.633975i −3.23205 + 1.86603i −2.63397 2.63397i −0.0980762 + 0.366025i 5.73205 + 1.53590i 2.83013 2.83013i 4.23205 + 7.33013i 1.66987 + 0.964102i
11.1 −0.500000 + 1.86603i −1.36603 2.36603i 0.232051 + 0.133975i −4.36603 4.36603i 5.09808 1.36603i 2.26795 + 8.46410i −5.83013 + 5.83013i 0.767949 1.33013i 10.3301 5.96410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.f odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.3.f.a 4
3.b odd 2 1 117.3.bd.b 4
4.b odd 2 1 208.3.bd.d 4
5.b even 2 1 325.3.t.a 4
5.c odd 4 1 325.3.w.a 4
5.c odd 4 1 325.3.w.b 4
13.b even 2 1 169.3.f.b 4
13.c even 3 1 169.3.d.a 4
13.c even 3 1 169.3.f.c 4
13.d odd 4 1 169.3.f.a 4
13.d odd 4 1 169.3.f.c 4
13.e even 6 1 169.3.d.c 4
13.e even 6 1 169.3.f.a 4
13.f odd 12 1 inner 13.3.f.a 4
13.f odd 12 1 169.3.d.a 4
13.f odd 12 1 169.3.d.c 4
13.f odd 12 1 169.3.f.b 4
39.k even 12 1 117.3.bd.b 4
52.l even 12 1 208.3.bd.d 4
65.o even 12 1 325.3.w.b 4
65.s odd 12 1 325.3.t.a 4
65.t even 12 1 325.3.w.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.3.f.a 4 1.a even 1 1 trivial
13.3.f.a 4 13.f odd 12 1 inner
117.3.bd.b 4 3.b odd 2 1
117.3.bd.b 4 39.k even 12 1
169.3.d.a 4 13.c even 3 1
169.3.d.a 4 13.f odd 12 1
169.3.d.c 4 13.e even 6 1
169.3.d.c 4 13.f odd 12 1
169.3.f.a 4 13.d odd 4 1
169.3.f.a 4 13.e even 6 1
169.3.f.b 4 13.b even 2 1
169.3.f.b 4 13.f odd 12 1
169.3.f.c 4 13.c even 3 1
169.3.f.c 4 13.d odd 4 1
208.3.bd.d 4 4.b odd 2 1
208.3.bd.d 4 52.l even 12 1
325.3.t.a 4 5.b even 2 1
325.3.t.a 4 65.s odd 12 1
325.3.w.a 4 5.c odd 4 1
325.3.w.a 4 65.t even 12 1
325.3.w.b 4 5.c odd 4 1
325.3.w.b 4 65.o even 12 1

Hecke kernels

This newform subspace is the entire newspace S3new(13,[χ])S_{3}^{\mathrm{new}}(13, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
33 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4+14T3++529 T^{4} + 14 T^{3} + \cdots + 529 Copy content Toggle raw display
77 T416T3++2704 T^{4} - 16 T^{3} + \cdots + 2704 Copy content Toggle raw display
1111 T44T3++10816 T^{4} - 4 T^{3} + \cdots + 10816 Copy content Toggle raw display
1313 (T2+13T+169)2 (T^{2} + 13 T + 169)^{2} Copy content Toggle raw display
1717 T4+12T3++45369 T^{4} + 12 T^{3} + \cdots + 45369 Copy content Toggle raw display
1919 T410T3++484 T^{4} - 10 T^{3} + \cdots + 484 Copy content Toggle raw display
2323 T418T3++39204 T^{4} - 18 T^{3} + \cdots + 39204 Copy content Toggle raw display
2929 T42T3++11449 T^{4} - 2 T^{3} + \cdots + 11449 Copy content Toggle raw display
3131 T4+20T3++2116 T^{4} + 20 T^{3} + \cdots + 2116 Copy content Toggle raw display
3737 T4+68T3++1868689 T^{4} + 68 T^{3} + \cdots + 1868689 Copy content Toggle raw display
4141 T4100T3++833569 T^{4} - 100 T^{3} + \cdots + 833569 Copy content Toggle raw display
4343 (T290T+2700)2 (T^{2} - 90 T + 2700)^{2} Copy content Toggle raw display
4747 T4+68T3++484 T^{4} + 68 T^{3} + \cdots + 484 Copy content Toggle raw display
5353 (T264T1163)2 (T^{2} - 64 T - 1163)^{2} Copy content Toggle raw display
5959 T4+164T3++16613776 T^{4} + 164 T^{3} + \cdots + 16613776 Copy content Toggle raw display
6161 T4+124T3++6355441 T^{4} + 124 T^{3} + \cdots + 6355441 Copy content Toggle raw display
6767 T4118T3++9721924 T^{4} - 118 T^{3} + \cdots + 9721924 Copy content Toggle raw display
7171 T4+86T3++2208196 T^{4} + 86 T^{3} + \cdots + 2208196 Copy content Toggle raw display
7373 T458T3++3463321 T^{4} - 58 T^{3} + \cdots + 3463321 Copy content Toggle raw display
7979 (T2+20T5192)2 (T^{2} + 20 T - 5192)^{2} Copy content Toggle raw display
8383 T4+188T3++11587216 T^{4} + 188 T^{3} + \cdots + 11587216 Copy content Toggle raw display
8989 T4+110T3++8702500 T^{4} + 110 T^{3} + \cdots + 8702500 Copy content Toggle raw display
9797 T4178T3++18028516 T^{4} - 178 T^{3} + \cdots + 18028516 Copy content Toggle raw display
show more
show less