gp: [N,k,chi] = [13,3,Mod(2,13)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(13, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("13.2");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 13 Z ) × \left(\mathbb{Z}/13\mathbb{Z}\right)^\times ( Z / 1 3 Z ) × .
n n n
2 2 2
χ ( n ) \chi(n) χ ( n )
ζ 12 \zeta_{12} ζ 1 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 3 n e w ( 13 , [ χ ] ) S_{3}^{\mathrm{new}}(13, [\chi]) S 3 n e w ( 1 3 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 2 T 3 + ⋯ + 1 T^{4} + 2 T^{3} + \cdots + 1 T 4 + 2 T 3 + ⋯ + 1
T^4 + 2*T^3 + 5*T^2 + 4*T + 1
3 3 3
T 4 + 2 T 3 + ⋯ + 4 T^{4} + 2 T^{3} + \cdots + 4 T 4 + 2 T 3 + ⋯ + 4
T^4 + 2*T^3 + 6*T^2 - 4*T + 4
5 5 5
T 4 + 14 T 3 + ⋯ + 529 T^{4} + 14 T^{3} + \cdots + 529 T 4 + 1 4 T 3 + ⋯ + 5 2 9
T^4 + 14*T^3 + 98*T^2 + 322*T + 529
7 7 7
T 4 − 16 T 3 + ⋯ + 2704 T^{4} - 16 T^{3} + \cdots + 2704 T 4 − 1 6 T 3 + ⋯ + 2 7 0 4
T^4 - 16*T^3 + 164*T^2 - 1040*T + 2704
11 11 1 1
T 4 − 4 T 3 + ⋯ + 10816 T^{4} - 4 T^{3} + \cdots + 10816 T 4 − 4 T 3 + ⋯ + 1 0 8 1 6
T^4 - 4*T^3 + 200*T^2 - 2912*T + 10816
13 13 1 3
( T 2 + 13 T + 169 ) 2 (T^{2} + 13 T + 169)^{2} ( T 2 + 1 3 T + 1 6 9 ) 2
(T^2 + 13*T + 169)^2
17 17 1 7
T 4 + 12 T 3 + ⋯ + 45369 T^{4} + 12 T^{3} + \cdots + 45369 T 4 + 1 2 T 3 + ⋯ + 4 5 3 6 9
T^4 + 12*T^3 - 165*T^2 - 2556*T + 45369
19 19 1 9
T 4 − 10 T 3 + ⋯ + 484 T^{4} - 10 T^{3} + \cdots + 484 T 4 − 1 0 T 3 + ⋯ + 4 8 4
T^4 - 10*T^3 + 74*T^2 - 308*T + 484
23 23 2 3
T 4 − 18 T 3 + ⋯ + 39204 T^{4} - 18 T^{3} + \cdots + 39204 T 4 − 1 8 T 3 + ⋯ + 3 9 2 0 4
T^4 - 18*T^3 - 90*T^2 + 3564*T + 39204
29 29 2 9
T 4 − 2 T 3 + ⋯ + 11449 T^{4} - 2 T^{3} + \cdots + 11449 T 4 − 2 T 3 + ⋯ + 1 1 4 4 9
T^4 - 2*T^3 + 111*T^2 + 214*T + 11449
31 31 3 1
T 4 + 20 T 3 + ⋯ + 2116 T^{4} + 20 T^{3} + \cdots + 2116 T 4 + 2 0 T 3 + ⋯ + 2 1 1 6
T^4 + 20*T^3 + 200*T^2 - 920*T + 2116
37 37 3 7
T 4 + 68 T 3 + ⋯ + 1868689 T^{4} + 68 T^{3} + \cdots + 1868689 T 4 + 6 8 T 3 + ⋯ + 1 8 6 8 6 8 9
T^4 + 68*T^3 + 1517*T^2 + 51946*T + 1868689
41 41 4 1
T 4 − 100 T 3 + ⋯ + 833569 T^{4} - 100 T^{3} + \cdots + 833569 T 4 − 1 0 0 T 3 + ⋯ + 8 3 3 5 6 9
T^4 - 100*T^3 + 3461*T^2 - 56606*T + 833569
43 43 4 3
( T 2 − 90 T + 2700 ) 2 (T^{2} - 90 T + 2700)^{2} ( T 2 − 9 0 T + 2 7 0 0 ) 2
(T^2 - 90*T + 2700)^2
47 47 4 7
T 4 + 68 T 3 + ⋯ + 484 T^{4} + 68 T^{3} + \cdots + 484 T 4 + 6 8 T 3 + ⋯ + 4 8 4
T^4 + 68*T^3 + 2312*T^2 - 1496*T + 484
53 53 5 3
( T 2 − 64 T − 1163 ) 2 (T^{2} - 64 T - 1163)^{2} ( T 2 − 6 4 T − 1 1 6 3 ) 2
(T^2 - 64*T - 1163)^2
59 59 5 9
T 4 + 164 T 3 + ⋯ + 16613776 T^{4} + 164 T^{3} + \cdots + 16613776 T 4 + 1 6 4 T 3 + ⋯ + 1 6 6 1 3 7 7 6
T^4 + 164*T^3 + 6980*T^2 + 130432*T + 16613776
61 61 6 1
T 4 + 124 T 3 + ⋯ + 6355441 T^{4} + 124 T^{3} + \cdots + 6355441 T 4 + 1 2 4 T 3 + ⋯ + 6 3 5 5 4 4 1
T^4 + 124*T^3 + 12855*T^2 + 312604*T + 6355441
67 67 6 7
T 4 − 118 T 3 + ⋯ + 9721924 T^{4} - 118 T^{3} + \cdots + 9721924 T 4 − 1 1 8 T 3 + ⋯ + 9 7 2 1 9 2 4
T^4 - 118*T^3 + 10706*T^2 - 530060*T + 9721924
71 71 7 1
T 4 + 86 T 3 + ⋯ + 2208196 T^{4} + 86 T^{3} + \cdots + 2208196 T 4 + 8 6 T 3 + ⋯ + 2 2 0 8 1 9 6
T^4 + 86*T^3 + 4658*T^2 + 157516*T + 2208196
73 73 7 3
T 4 − 58 T 3 + ⋯ + 3463321 T^{4} - 58 T^{3} + \cdots + 3463321 T 4 − 5 8 T 3 + ⋯ + 3 4 6 3 3 2 1
T^4 - 58*T^3 + 1682*T^2 + 107938*T + 3463321
79 79 7 9
( T 2 + 20 T − 5192 ) 2 (T^{2} + 20 T - 5192)^{2} ( T 2 + 2 0 T − 5 1 9 2 ) 2
(T^2 + 20*T - 5192)^2
83 83 8 3
T 4 + 188 T 3 + ⋯ + 11587216 T^{4} + 188 T^{3} + \cdots + 11587216 T 4 + 1 8 8 T 3 + ⋯ + 1 1 5 8 7 2 1 6
T^4 + 188*T^3 + 17672*T^2 + 639952*T + 11587216
89 89 8 9
T 4 + 110 T 3 + ⋯ + 8702500 T^{4} + 110 T^{3} + \cdots + 8702500 T 4 + 1 1 0 T 3 + ⋯ + 8 7 0 2 5 0 0
T^4 + 110*T^3 + 12050*T^2 + 560500*T + 8702500
97 97 9 7
T 4 − 178 T 3 + ⋯ + 18028516 T^{4} - 178 T^{3} + \cdots + 18028516 T 4 − 1 7 8 T 3 + ⋯ + 1 8 0 2 8 5 1 6
T^4 - 178*T^3 + 13250*T^2 - 619916*T + 18028516
show more
show less