Properties

Label 13.2.e
Level $13$
Weight $2$
Character orbit 13.e
Rep. character $\chi_{13}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 13.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(13, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

Trace form

\( 2 q - 3 q^{2} - 2 q^{3} + q^{4} + 6 q^{6} - q^{9} - 3 q^{10} - 4 q^{12} - 5 q^{13} + 6 q^{15} + 5 q^{16} + 3 q^{17} - 6 q^{19} + 3 q^{20} + 6 q^{23} - 6 q^{24} + 4 q^{25} + 3 q^{26} - 8 q^{27} - 3 q^{29}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(13, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
13.2.e.a 13.e 13.e $2$ $0.104$ \(\Q(\sqrt{-3}) \) None 13.2.e.a \(-3\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)