Newspace parameters
Level: | \( N \) | \(=\) | \( 13 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 13.e (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.9400207637\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −148.000 | − | 85.4479i | 1092.19 | − | 1891.73i | 10506.7 | + | 18198.1i | − | 22940.5i | −323289. | + | 186651.i | 137378. | − | 79315.3i | − | 2.19112e6i | −1.58860e6 | − | 2.75154e6i | −1.96022e6 | + | 3.39519e6i | ||
4.2 | −139.455 | − | 80.5145i | −619.056 | + | 1072.24i | 8869.17 | + | 15361.9i | 40204.7i | 172661. | − | 99686.1i | −4340.50 | + | 2505.99i | − | 1.53724e6i | 30699.8 | + | 53173.6i | 3.23706e6 | − | 5.60676e6i | |||
4.3 | −103.966 | − | 60.0249i | −41.2753 | + | 71.4909i | 3109.97 | + | 5386.62i | − | 28055.4i | 8582.46 | − | 4955.09i | −389915. | + | 225118.i | 236746.i | 793754. | + | 1.37482e6i | −1.68402e6 | + | 2.91681e6i | |||
4.4 | −87.3849 | − | 50.4517i | 197.507 | − | 342.093i | 994.753 | + | 1722.96i | 4300.66i | −34518.3 | + | 19929.2i | 411054. | − | 237322.i | 625853.i | 719143. | + | 1.24559e6i | 216976. | − | 375813.i | ||||
4.5 | −77.2063 | − | 44.5751i | −1229.77 | + | 2130.03i | −122.125 | − | 211.526i | − | 52376.5i | 189892. | − | 109634.i | 240349. | − | 138765.i | 752093.i | −2.22751e6 | − | 3.85817e6i | −2.33469e6 | + | 4.04379e6i | |||
4.6 | −55.2505 | − | 31.8989i | 924.809 | − | 1601.82i | −2060.92 | − | 3569.63i | 57759.0i | −102192. | + | 59000.7i | −148669. | + | 85833.9i | 785596.i | −913381. | − | 1.58202e6i | 1.84245e6 | − | 3.19121e6i | ||||
4.7 | −11.3819 | − | 6.57136i | −864.242 | + | 1496.91i | −4009.63 | − | 6944.89i | 50287.2i | 19673.5 | − | 11358.5i | −255242. | + | 147364.i | 213060.i | −696665. | − | 1.20666e6i | 330455. | − | 572365.i | ||||
4.8 | −5.65944 | − | 3.26748i | 865.700 | − | 1499.44i | −4074.65 | − | 7057.50i | − | 60806.7i | −9798.77 | + | 5657.32i | −175141. | + | 101118.i | 106790.i | −701713. | − | 1.21540e6i | −198685. | + | 344132.i | |||
4.9 | −1.87656 | − | 1.08343i | −123.317 | + | 213.592i | −4093.65 | − | 7090.41i | − | 3830.61i | 462.824 | − | 267.212i | 38591.2 | − | 22280.6i | 35491.7i | 766747. | + | 1.32805e6i | −4150.20 | + | 7188.36i | |||
4.10 | 57.2913 | + | 33.0771i | −469.367 | + | 812.968i | −1907.80 | − | 3304.41i | − | 11059.1i | −53781.3 | + | 31050.6i | 299288. | − | 172794.i | − | 794355.i | 356551. | + | 617564.i | 365805. | − | 633593.i | ||
4.11 | 73.3921 | + | 42.3729i | 812.878 | − | 1407.95i | −505.068 | − | 874.804i | 11734.8i | 119318. | − | 68888.1i | 138253. | − | 79820.2i | − | 779843.i | −524381. | − | 908254.i | −497238. | + | 861241.i | |||
4.12 | 97.8824 | + | 56.5124i | −748.252 | + | 1296.01i | 2291.31 | + | 3968.66i | − | 55447.0i | −146481. | + | 84571.1i | −434658. | + | 250950.i | − | 407950.i | −322601. | − | 558762.i | 3.13344e6 | − | 5.42728e6i | ||
4.13 | 113.733 | + | 65.6639i | 197.560 | − | 342.184i | 4527.50 | + | 7841.87i | 34433.6i | 44938.3 | − | 25945.1i | −324633. | + | 187427.i | 113337.i | 719102. | + | 1.24552e6i | −2.26105e6 | + | 3.91624e6i | ||||
4.14 | 134.717 | + | 77.7787i | −960.268 | + | 1663.23i | 8003.06 | + | 13861.7i | 38811.6i | −258728. | + | 149377.i | 442407. | − | 255424.i | 1.21554e6i | −1.04707e6 | − | 1.81358e6i | −3.01871e6 | + | 5.22857e6i | ||||
4.15 | 151.665 | + | 87.5640i | 599.903 | − | 1039.06i | 11238.9 | + | 19466.4i | − | 54580.7i | 181969. | − | 105060.i | 244771. | − | 141318.i | 2.50185e6i | 77394.3 | + | 134051.i | 4.77930e6 | − | 8.27800e6i | |||
10.1 | −148.000 | + | 85.4479i | 1092.19 | + | 1891.73i | 10506.7 | − | 18198.1i | 22940.5i | −323289. | − | 186651.i | 137378. | + | 79315.3i | 2.19112e6i | −1.58860e6 | + | 2.75154e6i | −1.96022e6 | − | 3.39519e6i | ||||
10.2 | −139.455 | + | 80.5145i | −619.056 | − | 1072.24i | 8869.17 | − | 15361.9i | − | 40204.7i | 172661. | + | 99686.1i | −4340.50 | − | 2505.99i | 1.53724e6i | 30699.8 | − | 53173.6i | 3.23706e6 | + | 5.60676e6i | |||
10.3 | −103.966 | + | 60.0249i | −41.2753 | − | 71.4909i | 3109.97 | − | 5386.62i | 28055.4i | 8582.46 | + | 4955.09i | −389915. | − | 225118.i | − | 236746.i | 793754. | − | 1.37482e6i | −1.68402e6 | − | 2.91681e6i | |||
10.4 | −87.3849 | + | 50.4517i | 197.507 | + | 342.093i | 994.753 | − | 1722.96i | − | 4300.66i | −34518.3 | − | 19929.2i | 411054. | + | 237322.i | − | 625853.i | 719143. | − | 1.24559e6i | 216976. | + | 375813.i | ||
10.5 | −77.2063 | + | 44.5751i | −1229.77 | − | 2130.03i | −122.125 | + | 211.526i | 52376.5i | 189892. | + | 109634.i | 240349. | + | 138765.i | − | 752093.i | −2.22751e6 | + | 3.85817e6i | −2.33469e6 | − | 4.04379e6i | |||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 13.14.e.a | ✓ | 30 |
13.e | even | 6 | 1 | inner | 13.14.e.a | ✓ | 30 |
13.f | odd | 12 | 2 | 169.14.a.f | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.14.e.a | ✓ | 30 | 1.a | even | 1 | 1 | trivial |
13.14.e.a | ✓ | 30 | 13.e | even | 6 | 1 | inner |
169.14.a.f | 30 | 13.f | odd | 12 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{14}^{\mathrm{new}}(13, [\chi])\).