Properties

Label 13.10.b
Level $13$
Weight $10$
Character orbit 13.b
Rep. character $\chi_{13}(12,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $1$
Sturm bound $11$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 13.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(11\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(13, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 10 10 0
Eisenstein series 2 2 0

Trace form

\( 10 q - 2 q^{3} - 2562 q^{4} + 67304 q^{9} + O(q^{10}) \) \( 10 q - 2 q^{3} - 2562 q^{4} + 67304 q^{9} + 45562 q^{10} + 46298 q^{12} - 111488 q^{13} + 169350 q^{14} - 209470 q^{16} - 1189686 q^{17} + 3516760 q^{22} + 2210916 q^{23} - 10109316 q^{25} + 7627230 q^{26} - 7880006 q^{27} + 7039224 q^{29} - 7573410 q^{30} + 39493506 q^{35} + 29007196 q^{36} - 50219652 q^{38} + 14502332 q^{39} - 23263606 q^{40} + 400842 q^{42} - 92334370 q^{43} + 102213790 q^{48} - 100714448 q^{49} + 77969322 q^{51} - 113165052 q^{52} + 29507556 q^{53} + 138590608 q^{55} + 437436342 q^{56} - 238375816 q^{61} - 565735320 q^{62} + 272247742 q^{64} - 351372138 q^{65} - 495101088 q^{66} + 550420050 q^{68} + 505082484 q^{69} + 1257672774 q^{74} - 1443387976 q^{75} + 530898576 q^{77} - 1745232606 q^{78} - 441679756 q^{79} + 1486784810 q^{81} + 518795296 q^{82} + 4793242032 q^{87} - 3927690208 q^{88} - 2656725444 q^{90} - 777339186 q^{91} - 4121025444 q^{92} + 6226353478 q^{94} + 1047837276 q^{95} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(13, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
13.10.b.a 13.b 13.b $10$ $6.695$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 13.10.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-2^{8}+\beta _{2})q^{4}+\cdots\)