Properties

Label 13.10.a.b
Level $13$
Weight $10$
Character orbit 13.a
Self dual yes
Analytic conductor $6.695$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,10,Mod(1,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.69546587013\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 3) q^{2} + ( - \beta_{2} + 2 \beta_1 + 32) q^{3} + (\beta_{4} + 10 \beta_1 + 72) q^{4} + ( - 3 \beta_{4} + \beta_{3} + \cdots + 361) q^{5} + ( - 2 \beta_{4} - 7 \beta_{3} + \cdots + 1141) q^{6}+ \cdots + (11504 \beta_{4} + 27862 \beta_{3} + \cdots + 602456384) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 15 q^{2} + 161 q^{3} + 361 q^{4} + 1803 q^{5} + 5693 q^{6} + 10099 q^{7} + 23151 q^{8} + 61060 q^{9} + 84505 q^{10} + 121746 q^{11} + 113389 q^{12} + 142805 q^{13} + 8475 q^{14} + 105973 q^{15} - 322463 q^{16}+ \cdots + 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 55\nu^{3} + 317\nu^{2} - 39383\nu + 189604 ) / 1088 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{4} - 113\nu^{3} - 6571\nu^{2} + 54545\nu + 495172 ) / 1088 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{2} - 4\nu - 575 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + 4\beta _1 + 575 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 16\beta_{4} + 4\beta_{3} + 28\beta_{2} + 877\beta _1 + 2500 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 1197\beta_{4} + 220\beta_{3} + 452\beta_{2} + 10120\beta _1 + 509379 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−27.7188
−24.3176
0.150341
16.7176
35.1685
−24.7188 194.269 99.0182 −920.299 −4802.09 5359.02 10208.4 18057.4 22748.7
1.2 −21.3176 −195.094 −57.5590 −1277.14 4158.93 −2277.98 12141.6 18378.5 27225.6
1.3 3.15034 −136.532 −502.075 2554.62 −430.124 9399.91 −3194.68 −1041.89 8047.92
1.4 19.7176 250.479 −123.217 1555.58 4938.84 −8329.39 −12524.9 43056.6 30672.3
1.5 38.1685 47.8784 944.833 −109.762 1827.45 5947.44 16520.6 −17390.7 −4189.45
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.10.a.b 5
3.b odd 2 1 117.10.a.e 5
4.b odd 2 1 208.10.a.h 5
5.b even 2 1 325.10.a.b 5
13.b even 2 1 169.10.a.b 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.10.a.b 5 1.a even 1 1 trivial
117.10.a.e 5 3.b odd 2 1
169.10.a.b 5 13.b even 2 1
208.10.a.h 5 4.b odd 2 1
325.10.a.b 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - 15T_{2}^{4} - 1348T_{2}^{3} + 8508T_{2}^{2} + 383520T_{2} - 1249344 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(13))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 15 T^{4} + \cdots - 1249344 \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots - 62057286864 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots + 512670311383500 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 56\!\cdots\!88 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots - 19\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 39\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 42\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 44\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 48\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 51\!\cdots\!48 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 49\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 16\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 10\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 36\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 43\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 57\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 85\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 41\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 41\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 52\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 19\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 14\!\cdots\!32 \) Copy content Toggle raw display
show more
show less