Properties

Label 13.10.a
Level $13$
Weight $10$
Character orbit 13.a
Rep. character $\chi_{13}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $2$
Sturm bound $11$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(11\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(13))\).

Total New Old
Modular forms 11 9 2
Cusp forms 9 9 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(13\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(5\)\(4\)\(1\)\(4\)\(4\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(6\)\(5\)\(1\)\(5\)\(5\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 9 q - 18 q^{2} - 2 q^{3} + 1790 q^{4} + 2274 q^{5} + 1164 q^{6} - 1142 q^{7} - 22392 q^{8} + 31107 q^{9} + 16674 q^{10} + 81606 q^{11} - 42090 q^{12} + 28561 q^{13} - 269178 q^{14} + 189280 q^{15} + 404146 q^{16}+ \cdots + 5148380898 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(13))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 13
13.10.a.a 13.a 1.a $4$ $6.695$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 13.10.a.a \(-33\) \(-163\) \(471\) \(-11241\) $+$ $\mathrm{SU}(2)$ \(q+(-8-\beta _{1})q^{2}+(-41+2\beta _{1}-\beta _{3})q^{3}+\cdots\)
13.10.a.b 13.a 1.a $5$ $6.695$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 13.10.a.b \(15\) \(161\) \(1803\) \(10099\) $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{2}+(2^{5}+2\beta _{1}-\beta _{2})q^{3}+\cdots\)