Properties

Label 1296.5.e.c.161.6
Level $1296$
Weight $5$
Character 1296.161
Analytic conductor $133.967$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,5,Mod(161,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.161");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.6
Root \(-0.102534 + 0.177594i\) of defining polynomial
Character \(\chi\) \(=\) 1296.161
Dual form 1296.5.e.c.161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+34.7338i q^{5} +31.2109 q^{7} -57.7314i q^{11} -73.2956 q^{13} +386.985i q^{17} -115.791 q^{19} -548.312i q^{23} -581.437 q^{25} -785.291i q^{29} -544.734 q^{31} +1084.07i q^{35} +898.827 q^{37} -2588.85i q^{41} -2000.11 q^{43} +811.345i q^{47} -1426.88 q^{49} -2221.00i q^{53} +2005.23 q^{55} +1512.26i q^{59} -1902.56 q^{61} -2545.83i q^{65} -4507.09 q^{67} +3993.54i q^{71} -3436.70 q^{73} -1801.85i q^{77} -1202.78 q^{79} -9256.34i q^{83} -13441.4 q^{85} +8929.99i q^{89} -2287.62 q^{91} -4021.86i q^{95} +6670.29 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{7} + 12 q^{13} + 258 q^{19} + 546 q^{25} + 2580 q^{31} + 12 q^{37} - 570 q^{43} + 3726 q^{49} - 2016 q^{55} - 7260 q^{61} - 10110 q^{67} - 14622 q^{73} + 9528 q^{79} - 24732 q^{85} - 34836 q^{91}+ \cdots + 57918 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 34.7338i 1.38935i 0.719323 + 0.694676i \(0.244452\pi\)
−0.719323 + 0.694676i \(0.755548\pi\)
\(6\) 0 0
\(7\) 31.2109 0.636956 0.318478 0.947930i \(-0.396828\pi\)
0.318478 + 0.947930i \(0.396828\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 57.7314i − 0.477119i −0.971128 0.238559i \(-0.923325\pi\)
0.971128 0.238559i \(-0.0766752\pi\)
\(12\) 0 0
\(13\) −73.2956 −0.433702 −0.216851 0.976205i \(-0.569578\pi\)
−0.216851 + 0.976205i \(0.569578\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 386.985i 1.33905i 0.742791 + 0.669524i \(0.233502\pi\)
−0.742791 + 0.669524i \(0.766498\pi\)
\(18\) 0 0
\(19\) −115.791 −0.320750 −0.160375 0.987056i \(-0.551270\pi\)
−0.160375 + 0.987056i \(0.551270\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 548.312i − 1.03651i −0.855227 0.518253i \(-0.826583\pi\)
0.855227 0.518253i \(-0.173417\pi\)
\(24\) 0 0
\(25\) −581.437 −0.930299
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 785.291i − 0.933758i −0.884321 0.466879i \(-0.845378\pi\)
0.884321 0.466879i \(-0.154622\pi\)
\(30\) 0 0
\(31\) −544.734 −0.566840 −0.283420 0.958996i \(-0.591469\pi\)
−0.283420 + 0.958996i \(0.591469\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1084.07i 0.884957i
\(36\) 0 0
\(37\) 898.827 0.656557 0.328279 0.944581i \(-0.393532\pi\)
0.328279 + 0.944581i \(0.393532\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2588.85i − 1.54007i −0.638003 0.770034i \(-0.720239\pi\)
0.638003 0.770034i \(-0.279761\pi\)
\(42\) 0 0
\(43\) −2000.11 −1.08172 −0.540862 0.841111i \(-0.681902\pi\)
−0.540862 + 0.841111i \(0.681902\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 811.345i 0.367291i 0.982993 + 0.183645i \(0.0587898\pi\)
−0.982993 + 0.183645i \(0.941210\pi\)
\(48\) 0 0
\(49\) −1426.88 −0.594287
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2221.00i − 0.790672i −0.918537 0.395336i \(-0.870628\pi\)
0.918537 0.395336i \(-0.129372\pi\)
\(54\) 0 0
\(55\) 2005.23 0.662886
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1512.26i 0.434432i 0.976124 + 0.217216i \(0.0696976\pi\)
−0.976124 + 0.217216i \(0.930302\pi\)
\(60\) 0 0
\(61\) −1902.56 −0.511304 −0.255652 0.966769i \(-0.582290\pi\)
−0.255652 + 0.966769i \(0.582290\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2545.83i − 0.602564i
\(66\) 0 0
\(67\) −4507.09 −1.00403 −0.502015 0.864859i \(-0.667408\pi\)
−0.502015 + 0.864859i \(0.667408\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3993.54i 0.792213i 0.918205 + 0.396106i \(0.129639\pi\)
−0.918205 + 0.396106i \(0.870361\pi\)
\(72\) 0 0
\(73\) −3436.70 −0.644905 −0.322452 0.946586i \(-0.604507\pi\)
−0.322452 + 0.946586i \(0.604507\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1801.85i − 0.303904i
\(78\) 0 0
\(79\) −1202.78 −0.192722 −0.0963608 0.995346i \(-0.530720\pi\)
−0.0963608 + 0.995346i \(0.530720\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 9256.34i − 1.34364i −0.740714 0.671820i \(-0.765513\pi\)
0.740714 0.671820i \(-0.234487\pi\)
\(84\) 0 0
\(85\) −13441.4 −1.86041
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8929.99i 1.12738i 0.825986 + 0.563691i \(0.190619\pi\)
−0.825986 + 0.563691i \(0.809381\pi\)
\(90\) 0 0
\(91\) −2287.62 −0.276249
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 4021.86i − 0.445635i
\(96\) 0 0
\(97\) 6670.29 0.708926 0.354463 0.935070i \(-0.384664\pi\)
0.354463 + 0.935070i \(0.384664\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 9150.06i − 0.896977i −0.893789 0.448489i \(-0.851962\pi\)
0.893789 0.448489i \(-0.148038\pi\)
\(102\) 0 0
\(103\) −15312.4 −1.44334 −0.721670 0.692237i \(-0.756625\pi\)
−0.721670 + 0.692237i \(0.756625\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6099.28i 0.532735i 0.963872 + 0.266367i \(0.0858234\pi\)
−0.963872 + 0.266367i \(0.914177\pi\)
\(108\) 0 0
\(109\) 15169.5 1.27679 0.638393 0.769710i \(-0.279599\pi\)
0.638393 + 0.769710i \(0.279599\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1373.06i 0.107531i 0.998554 + 0.0537655i \(0.0171224\pi\)
−0.998554 + 0.0537655i \(0.982878\pi\)
\(114\) 0 0
\(115\) 19045.0 1.44007
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12078.1i 0.852914i
\(120\) 0 0
\(121\) 11308.1 0.772358
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1513.10i 0.0968386i
\(126\) 0 0
\(127\) 19152.4 1.18745 0.593726 0.804667i \(-0.297656\pi\)
0.593726 + 0.804667i \(0.297656\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 3020.00i − 0.175980i −0.996121 0.0879902i \(-0.971956\pi\)
0.996121 0.0879902i \(-0.0280444\pi\)
\(132\) 0 0
\(133\) −3613.93 −0.204304
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 10147.9i − 0.540671i −0.962766 0.270336i \(-0.912865\pi\)
0.962766 0.270336i \(-0.0871346\pi\)
\(138\) 0 0
\(139\) 35126.4 1.81804 0.909021 0.416751i \(-0.136831\pi\)
0.909021 + 0.416751i \(0.136831\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4231.45i 0.206927i
\(144\) 0 0
\(145\) 27276.1 1.29732
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 37382.0i − 1.68380i −0.539636 0.841899i \(-0.681438\pi\)
0.539636 0.841899i \(-0.318562\pi\)
\(150\) 0 0
\(151\) −33270.0 −1.45915 −0.729573 0.683903i \(-0.760281\pi\)
−0.729573 + 0.683903i \(0.760281\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 18920.7i − 0.787541i
\(156\) 0 0
\(157\) 8080.33 0.327816 0.163908 0.986476i \(-0.447590\pi\)
0.163908 + 0.986476i \(0.447590\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 17113.3i − 0.660209i
\(162\) 0 0
\(163\) 25427.1 0.957022 0.478511 0.878081i \(-0.341177\pi\)
0.478511 + 0.878081i \(0.341177\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 35052.8i − 1.25687i −0.777863 0.628434i \(-0.783696\pi\)
0.777863 0.628434i \(-0.216304\pi\)
\(168\) 0 0
\(169\) −23188.8 −0.811903
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14700.5i 0.491177i 0.969374 + 0.245589i \(0.0789813\pi\)
−0.969374 + 0.245589i \(0.921019\pi\)
\(174\) 0 0
\(175\) −18147.2 −0.592560
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 37052.5i − 1.15641i −0.815892 0.578205i \(-0.803753\pi\)
0.815892 0.578205i \(-0.196247\pi\)
\(180\) 0 0
\(181\) −39664.7 −1.21073 −0.605365 0.795948i \(-0.706973\pi\)
−0.605365 + 0.795948i \(0.706973\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 31219.7i 0.912189i
\(186\) 0 0
\(187\) 22341.2 0.638885
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 57637.0i − 1.57992i −0.613160 0.789959i \(-0.710102\pi\)
0.613160 0.789959i \(-0.289898\pi\)
\(192\) 0 0
\(193\) 4179.63 0.112208 0.0561039 0.998425i \(-0.482132\pi\)
0.0561039 + 0.998425i \(0.482132\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22191.5i 0.571812i 0.958258 + 0.285906i \(0.0922945\pi\)
−0.958258 + 0.285906i \(0.907705\pi\)
\(198\) 0 0
\(199\) −50608.7 −1.27797 −0.638983 0.769221i \(-0.720645\pi\)
−0.638983 + 0.769221i \(0.720645\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 24509.6i − 0.594763i
\(204\) 0 0
\(205\) 89920.7 2.13970
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6684.77i 0.153036i
\(210\) 0 0
\(211\) 8918.05 0.200311 0.100156 0.994972i \(-0.468066\pi\)
0.100156 + 0.994972i \(0.468066\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 69471.4i − 1.50290i
\(216\) 0 0
\(217\) −17001.6 −0.361052
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 28364.3i − 0.580747i
\(222\) 0 0
\(223\) 8497.53 0.170877 0.0854384 0.996343i \(-0.472771\pi\)
0.0854384 + 0.996343i \(0.472771\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 19102.8i − 0.370719i −0.982671 0.185360i \(-0.940655\pi\)
0.982671 0.185360i \(-0.0593450\pi\)
\(228\) 0 0
\(229\) −10723.0 −0.204478 −0.102239 0.994760i \(-0.532601\pi\)
−0.102239 + 0.994760i \(0.532601\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 102200.i − 1.88251i −0.337694 0.941256i \(-0.609647\pi\)
0.337694 0.941256i \(-0.390353\pi\)
\(234\) 0 0
\(235\) −28181.1 −0.510296
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15520.2i 0.271707i 0.990729 + 0.135854i \(0.0433777\pi\)
−0.990729 + 0.135854i \(0.956622\pi\)
\(240\) 0 0
\(241\) −71957.8 −1.23892 −0.619461 0.785028i \(-0.712649\pi\)
−0.619461 + 0.785028i \(0.712649\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 49561.1i − 0.825674i
\(246\) 0 0
\(247\) 8486.96 0.139110
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 41487.8i − 0.658526i −0.944238 0.329263i \(-0.893200\pi\)
0.944238 0.329263i \(-0.106800\pi\)
\(252\) 0 0
\(253\) −31654.8 −0.494537
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 72529.3i 1.09811i 0.835785 + 0.549057i \(0.185013\pi\)
−0.835785 + 0.549057i \(0.814987\pi\)
\(258\) 0 0
\(259\) 28053.1 0.418198
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 85890.2i 1.24174i 0.783912 + 0.620872i \(0.213221\pi\)
−0.783912 + 0.620872i \(0.786779\pi\)
\(264\) 0 0
\(265\) 77143.7 1.09852
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 88967.6i − 1.22950i −0.788724 0.614748i \(-0.789258\pi\)
0.788724 0.614748i \(-0.210742\pi\)
\(270\) 0 0
\(271\) −96541.6 −1.31455 −0.657273 0.753652i \(-0.728290\pi\)
−0.657273 + 0.753652i \(0.728290\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 33567.2i 0.443863i
\(276\) 0 0
\(277\) −23541.6 −0.306815 −0.153407 0.988163i \(-0.549025\pi\)
−0.153407 + 0.988163i \(0.549025\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 58409.9i − 0.739731i −0.929085 0.369865i \(-0.879404\pi\)
0.929085 0.369865i \(-0.120596\pi\)
\(282\) 0 0
\(283\) 76117.3 0.950408 0.475204 0.879876i \(-0.342374\pi\)
0.475204 + 0.879876i \(0.342374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 80800.3i − 0.980956i
\(288\) 0 0
\(289\) −66236.1 −0.793047
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 139911.i − 1.62973i −0.579649 0.814866i \(-0.696810\pi\)
0.579649 0.814866i \(-0.303190\pi\)
\(294\) 0 0
\(295\) −52526.4 −0.603579
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 40188.8i 0.449534i
\(300\) 0 0
\(301\) −62425.1 −0.689011
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 66083.2i − 0.710381i
\(306\) 0 0
\(307\) 81796.8 0.867880 0.433940 0.900942i \(-0.357123\pi\)
0.433940 + 0.900942i \(0.357123\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 1702.71i − 0.0176043i −0.999961 0.00880216i \(-0.997198\pi\)
0.999961 0.00880216i \(-0.00280185\pi\)
\(312\) 0 0
\(313\) −69960.1 −0.714105 −0.357052 0.934084i \(-0.616218\pi\)
−0.357052 + 0.934084i \(0.616218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 116629.i 1.16062i 0.814397 + 0.580309i \(0.197068\pi\)
−0.814397 + 0.580309i \(0.802932\pi\)
\(318\) 0 0
\(319\) −45335.9 −0.445514
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 44809.3i − 0.429500i
\(324\) 0 0
\(325\) 42616.8 0.403472
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 25322.8i 0.233948i
\(330\) 0 0
\(331\) −100836. −0.920366 −0.460183 0.887824i \(-0.652216\pi\)
−0.460183 + 0.887824i \(0.652216\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 156549.i − 1.39495i
\(336\) 0 0
\(337\) 40094.5 0.353041 0.176520 0.984297i \(-0.443516\pi\)
0.176520 + 0.984297i \(0.443516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 31448.2i 0.270450i
\(342\) 0 0
\(343\) −119471. −1.01549
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 226362.i − 1.87994i −0.341254 0.939971i \(-0.610852\pi\)
0.341254 0.939971i \(-0.389148\pi\)
\(348\) 0 0
\(349\) 79598.3 0.653511 0.326755 0.945109i \(-0.394045\pi\)
0.326755 + 0.945109i \(0.394045\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 139919.i − 1.12286i −0.827523 0.561431i \(-0.810251\pi\)
0.827523 0.561431i \(-0.189749\pi\)
\(354\) 0 0
\(355\) −138711. −1.10066
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 211616.i 1.64195i 0.570963 + 0.820976i \(0.306570\pi\)
−0.570963 + 0.820976i \(0.693430\pi\)
\(360\) 0 0
\(361\) −116913. −0.897119
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 119370.i − 0.896000i
\(366\) 0 0
\(367\) 31993.6 0.237537 0.118769 0.992922i \(-0.462105\pi\)
0.118769 + 0.992922i \(0.462105\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 69319.2i − 0.503623i
\(372\) 0 0
\(373\) −123148. −0.885133 −0.442567 0.896736i \(-0.645932\pi\)
−0.442567 + 0.896736i \(0.645932\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 57558.3i 0.404972i
\(378\) 0 0
\(379\) 116524. 0.811218 0.405609 0.914047i \(-0.367059\pi\)
0.405609 + 0.914047i \(0.367059\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 181112.i 1.23467i 0.786701 + 0.617334i \(0.211787\pi\)
−0.786701 + 0.617334i \(0.788213\pi\)
\(384\) 0 0
\(385\) 62585.0 0.422229
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 50827.4i − 0.335892i −0.985796 0.167946i \(-0.946287\pi\)
0.985796 0.167946i \(-0.0537134\pi\)
\(390\) 0 0
\(391\) 212188. 1.38793
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 41777.0i − 0.267758i
\(396\) 0 0
\(397\) 228710. 1.45112 0.725561 0.688158i \(-0.241580\pi\)
0.725561 + 0.688158i \(0.241580\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 188930.i − 1.17493i −0.809250 0.587465i \(-0.800126\pi\)
0.809250 0.587465i \(-0.199874\pi\)
\(402\) 0 0
\(403\) 39926.5 0.245840
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 51890.5i − 0.313256i
\(408\) 0 0
\(409\) 277427. 1.65845 0.829223 0.558918i \(-0.188783\pi\)
0.829223 + 0.558918i \(0.188783\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 47198.8i 0.276714i
\(414\) 0 0
\(415\) 321508. 1.86679
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 102422.i − 0.583397i −0.956510 0.291699i \(-0.905780\pi\)
0.956510 0.291699i \(-0.0942205\pi\)
\(420\) 0 0
\(421\) 47135.8 0.265942 0.132971 0.991120i \(-0.457548\pi\)
0.132971 + 0.991120i \(0.457548\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 225007.i − 1.24571i
\(426\) 0 0
\(427\) −59380.6 −0.325678
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 45556.1i 0.245240i 0.992454 + 0.122620i \(0.0391297\pi\)
−0.992454 + 0.122620i \(0.960870\pi\)
\(432\) 0 0
\(433\) 209599. 1.11793 0.558965 0.829192i \(-0.311199\pi\)
0.558965 + 0.829192i \(0.311199\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 63489.5i 0.332460i
\(438\) 0 0
\(439\) 183684. 0.953110 0.476555 0.879145i \(-0.341885\pi\)
0.476555 + 0.879145i \(0.341885\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 115943.i 0.590795i 0.955374 + 0.295398i \(0.0954521\pi\)
−0.955374 + 0.295398i \(0.904548\pi\)
\(444\) 0 0
\(445\) −310172. −1.56633
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 328940.i − 1.63164i −0.578305 0.815820i \(-0.696286\pi\)
0.578305 0.815820i \(-0.303714\pi\)
\(450\) 0 0
\(451\) −149458. −0.734795
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 79457.6i − 0.383807i
\(456\) 0 0
\(457\) −212737. −1.01862 −0.509308 0.860584i \(-0.670099\pi\)
−0.509308 + 0.860584i \(0.670099\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 48448.1i − 0.227968i −0.993483 0.113984i \(-0.963639\pi\)
0.993483 0.113984i \(-0.0363613\pi\)
\(462\) 0 0
\(463\) −169101. −0.788832 −0.394416 0.918932i \(-0.629053\pi\)
−0.394416 + 0.918932i \(0.629053\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 54646.4i − 0.250569i −0.992121 0.125285i \(-0.960016\pi\)
0.992121 0.125285i \(-0.0399844\pi\)
\(468\) 0 0
\(469\) −140670. −0.639524
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 115469.i 0.516111i
\(474\) 0 0
\(475\) 67325.1 0.298394
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 138577.i 0.603978i 0.953311 + 0.301989i \(0.0976506\pi\)
−0.953311 + 0.301989i \(0.902349\pi\)
\(480\) 0 0
\(481\) −65880.0 −0.284750
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 231684.i 0.984948i
\(486\) 0 0
\(487\) −23464.1 −0.0989340 −0.0494670 0.998776i \(-0.515752\pi\)
−0.0494670 + 0.998776i \(0.515752\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 74326.7i 0.308306i 0.988047 + 0.154153i \(0.0492649\pi\)
−0.988047 + 0.154153i \(0.950735\pi\)
\(492\) 0 0
\(493\) 303895. 1.25035
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 124642.i 0.504605i
\(498\) 0 0
\(499\) 18972.0 0.0761925 0.0380963 0.999274i \(-0.487871\pi\)
0.0380963 + 0.999274i \(0.487871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 117856.i − 0.465818i −0.972498 0.232909i \(-0.925175\pi\)
0.972498 0.232909i \(-0.0748245\pi\)
\(504\) 0 0
\(505\) 317816. 1.24622
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 183460.i − 0.708120i −0.935223 0.354060i \(-0.884801\pi\)
0.935223 0.354060i \(-0.115199\pi\)
\(510\) 0 0
\(511\) −107262. −0.410776
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 531858.i − 2.00531i
\(516\) 0 0
\(517\) 46840.1 0.175241
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 409498.i 1.50861i 0.656526 + 0.754303i \(0.272025\pi\)
−0.656526 + 0.754303i \(0.727975\pi\)
\(522\) 0 0
\(523\) 211852. 0.774513 0.387256 0.921972i \(-0.373423\pi\)
0.387256 + 0.921972i \(0.373423\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 210804.i − 0.759026i
\(528\) 0 0
\(529\) −20804.7 −0.0743448
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 189751.i 0.667930i
\(534\) 0 0
\(535\) −211851. −0.740156
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 82375.9i 0.283545i
\(540\) 0 0
\(541\) 44016.5 0.150391 0.0751954 0.997169i \(-0.476042\pi\)
0.0751954 + 0.997169i \(0.476042\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 526894.i 1.77391i
\(546\) 0 0
\(547\) 42859.1 0.143241 0.0716207 0.997432i \(-0.477183\pi\)
0.0716207 + 0.997432i \(0.477183\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 90929.5i 0.299503i
\(552\) 0 0
\(553\) −37539.6 −0.122755
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 311007.i 1.00244i 0.865319 + 0.501222i \(0.167116\pi\)
−0.865319 + 0.501222i \(0.832884\pi\)
\(558\) 0 0
\(559\) 146599. 0.469145
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 285768.i − 0.901563i −0.892634 0.450782i \(-0.851145\pi\)
0.892634 0.450782i \(-0.148855\pi\)
\(564\) 0 0
\(565\) −47691.7 −0.149398
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 136683.i − 0.422171i −0.977468 0.211086i \(-0.932300\pi\)
0.977468 0.211086i \(-0.0676999\pi\)
\(570\) 0 0
\(571\) 28510.0 0.0874431 0.0437215 0.999044i \(-0.486079\pi\)
0.0437215 + 0.999044i \(0.486079\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 318809.i 0.964261i
\(576\) 0 0
\(577\) −293742. −0.882297 −0.441149 0.897434i \(-0.645429\pi\)
−0.441149 + 0.897434i \(0.645429\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 288898.i − 0.855840i
\(582\) 0 0
\(583\) −128221. −0.377244
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 386055.i − 1.12040i −0.828357 0.560200i \(-0.810724\pi\)
0.828357 0.560200i \(-0.189276\pi\)
\(588\) 0 0
\(589\) 63075.2 0.181814
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 305581.i − 0.868995i −0.900673 0.434497i \(-0.856926\pi\)
0.900673 0.434497i \(-0.143074\pi\)
\(594\) 0 0
\(595\) −419519. −1.18500
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 264738.i 0.737840i 0.929461 + 0.368920i \(0.120272\pi\)
−0.929461 + 0.368920i \(0.879728\pi\)
\(600\) 0 0
\(601\) −132203. −0.366009 −0.183005 0.983112i \(-0.558582\pi\)
−0.183005 + 0.983112i \(0.558582\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 392773.i 1.07308i
\(606\) 0 0
\(607\) 254146. 0.689772 0.344886 0.938645i \(-0.387918\pi\)
0.344886 + 0.938645i \(0.387918\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 59468.0i − 0.159295i
\(612\) 0 0
\(613\) −492878. −1.31165 −0.655826 0.754912i \(-0.727680\pi\)
−0.655826 + 0.754912i \(0.727680\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 121278.i 0.318574i 0.987232 + 0.159287i \(0.0509195\pi\)
−0.987232 + 0.159287i \(0.949081\pi\)
\(618\) 0 0
\(619\) −307364. −0.802180 −0.401090 0.916039i \(-0.631369\pi\)
−0.401090 + 0.916039i \(0.631369\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 278713.i 0.718092i
\(624\) 0 0
\(625\) −415954. −1.06484
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 347832.i 0.879161i
\(630\) 0 0
\(631\) 254196. 0.638425 0.319212 0.947683i \(-0.396582\pi\)
0.319212 + 0.947683i \(0.396582\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 665236.i 1.64979i
\(636\) 0 0
\(637\) 104584. 0.257743
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 365987.i 0.890736i 0.895348 + 0.445368i \(0.146927\pi\)
−0.895348 + 0.445368i \(0.853073\pi\)
\(642\) 0 0
\(643\) −230783. −0.558189 −0.279094 0.960264i \(-0.590034\pi\)
−0.279094 + 0.960264i \(0.590034\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 278596.i 0.665529i 0.943010 + 0.332764i \(0.107981\pi\)
−0.943010 + 0.332764i \(0.892019\pi\)
\(648\) 0 0
\(649\) 87304.7 0.207276
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 78506.8i 0.184111i 0.995754 + 0.0920557i \(0.0293438\pi\)
−0.995754 + 0.0920557i \(0.970656\pi\)
\(654\) 0 0
\(655\) 104896. 0.244499
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 857273.i 1.97401i 0.160703 + 0.987003i \(0.448624\pi\)
−0.160703 + 0.987003i \(0.551376\pi\)
\(660\) 0 0
\(661\) 22344.0 0.0511396 0.0255698 0.999673i \(-0.491860\pi\)
0.0255698 + 0.999673i \(0.491860\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 125526.i − 0.283850i
\(666\) 0 0
\(667\) −430584. −0.967846
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 109838.i 0.243953i
\(672\) 0 0
\(673\) −663478. −1.46486 −0.732430 0.680842i \(-0.761614\pi\)
−0.732430 + 0.680842i \(0.761614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 228121.i − 0.497722i −0.968539 0.248861i \(-0.919944\pi\)
0.968539 0.248861i \(-0.0800563\pi\)
\(678\) 0 0
\(679\) 208185. 0.451555
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 53606.6i 0.114915i 0.998348 + 0.0574575i \(0.0182994\pi\)
−0.998348 + 0.0574575i \(0.981701\pi\)
\(684\) 0 0
\(685\) 352474. 0.751182
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 162789.i 0.342915i
\(690\) 0 0
\(691\) −757326. −1.58609 −0.793043 0.609166i \(-0.791504\pi\)
−0.793043 + 0.609166i \(0.791504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.22007e6i 2.52590i
\(696\) 0 0
\(697\) 1.00185e6 2.06222
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 506359.i − 1.03044i −0.857058 0.515220i \(-0.827710\pi\)
0.857058 0.515220i \(-0.172290\pi\)
\(702\) 0 0
\(703\) −104076. −0.210591
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 285581.i − 0.571335i
\(708\) 0 0
\(709\) −651243. −1.29554 −0.647770 0.761836i \(-0.724298\pi\)
−0.647770 + 0.761836i \(0.724298\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 298684.i 0.587533i
\(714\) 0 0
\(715\) −146974. −0.287495
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 69724.6i − 0.134874i −0.997724 0.0674370i \(-0.978518\pi\)
0.997724 0.0674370i \(-0.0214822\pi\)
\(720\) 0 0
\(721\) −477913. −0.919345
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 456597.i 0.868675i
\(726\) 0 0
\(727\) 747728. 1.41473 0.707367 0.706846i \(-0.249883\pi\)
0.707367 + 0.706846i \(0.249883\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 774011.i − 1.44848i
\(732\) 0 0
\(733\) 65738.5 0.122352 0.0611761 0.998127i \(-0.480515\pi\)
0.0611761 + 0.998127i \(0.480515\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 260201.i 0.479042i
\(738\) 0 0
\(739\) −977921. −1.79067 −0.895334 0.445395i \(-0.853063\pi\)
−0.895334 + 0.445395i \(0.853063\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 504874.i 0.914545i 0.889327 + 0.457272i \(0.151174\pi\)
−0.889327 + 0.457272i \(0.848826\pi\)
\(744\) 0 0
\(745\) 1.29842e6 2.33939
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 190364.i 0.339329i
\(750\) 0 0
\(751\) 532791. 0.944663 0.472332 0.881421i \(-0.343412\pi\)
0.472332 + 0.881421i \(0.343412\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1.15559e6i − 2.02727i
\(756\) 0 0
\(757\) −293571. −0.512297 −0.256148 0.966637i \(-0.582454\pi\)
−0.256148 + 0.966637i \(0.582454\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25691.2i 0.0443624i 0.999754 + 0.0221812i \(0.00706108\pi\)
−0.999754 + 0.0221812i \(0.992939\pi\)
\(762\) 0 0
\(763\) 473453. 0.813257
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 110842.i − 0.188414i
\(768\) 0 0
\(769\) −647144. −1.09433 −0.547165 0.837025i \(-0.684293\pi\)
−0.547165 + 0.837025i \(0.684293\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 610238.i − 1.02127i −0.859798 0.510634i \(-0.829411\pi\)
0.859798 0.510634i \(-0.170589\pi\)
\(774\) 0 0
\(775\) 316728. 0.527331
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 299766.i 0.493977i
\(780\) 0 0
\(781\) 230553. 0.377980
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 280661.i 0.455451i
\(786\) 0 0
\(787\) 580321. 0.936955 0.468477 0.883475i \(-0.344803\pi\)
0.468477 + 0.883475i \(0.344803\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 42854.5i 0.0684926i
\(792\) 0 0
\(793\) 139449. 0.221753
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.05714e6i 1.66424i 0.554598 + 0.832118i \(0.312872\pi\)
−0.554598 + 0.832118i \(0.687128\pi\)
\(798\) 0 0
\(799\) −313978. −0.491820
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 198405.i 0.307696i
\(804\) 0 0
\(805\) 594409. 0.917263
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 355969.i 0.543895i 0.962312 + 0.271947i \(0.0876677\pi\)
−0.962312 + 0.271947i \(0.912332\pi\)
\(810\) 0 0
\(811\) 136417. 0.207409 0.103704 0.994608i \(-0.466930\pi\)
0.103704 + 0.994608i \(0.466930\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 883181.i 1.32964i
\(816\) 0 0
\(817\) 231594. 0.346964
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 455979.i − 0.676485i −0.941059 0.338243i \(-0.890168\pi\)
0.941059 0.338243i \(-0.109832\pi\)
\(822\) 0 0
\(823\) −503590. −0.743494 −0.371747 0.928334i \(-0.621241\pi\)
−0.371747 + 0.928334i \(0.621241\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 551861.i 0.806898i 0.915002 + 0.403449i \(0.132189\pi\)
−0.915002 + 0.403449i \(0.867811\pi\)
\(828\) 0 0
\(829\) −182308. −0.265275 −0.132638 0.991165i \(-0.542345\pi\)
−0.132638 + 0.991165i \(0.542345\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 552182.i − 0.795778i
\(834\) 0 0
\(835\) 1.21752e6 1.74623
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 415684.i 0.590526i 0.955416 + 0.295263i \(0.0954073\pi\)
−0.955416 + 0.295263i \(0.904593\pi\)
\(840\) 0 0
\(841\) 90599.4 0.128095
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 805434.i − 1.12802i
\(846\) 0 0
\(847\) 352935. 0.491958
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 492837.i − 0.680525i
\(852\) 0 0
\(853\) 150271. 0.206527 0.103263 0.994654i \(-0.467072\pi\)
0.103263 + 0.994654i \(0.467072\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 144768.i 0.197111i 0.995132 + 0.0985554i \(0.0314222\pi\)
−0.995132 + 0.0985554i \(0.968578\pi\)
\(858\) 0 0
\(859\) −333897. −0.452508 −0.226254 0.974068i \(-0.572648\pi\)
−0.226254 + 0.974068i \(0.572648\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.13280e6i 1.52101i 0.649330 + 0.760507i \(0.275049\pi\)
−0.649330 + 0.760507i \(0.724951\pi\)
\(864\) 0 0
\(865\) −510603. −0.682418
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 69437.9i 0.0919511i
\(870\) 0 0
\(871\) 330350. 0.435450
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 47225.2i 0.0616820i
\(876\) 0 0
\(877\) 496541. 0.645589 0.322795 0.946469i \(-0.395378\pi\)
0.322795 + 0.946469i \(0.395378\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.21533e6i 1.56583i 0.622131 + 0.782913i \(0.286267\pi\)
−0.622131 + 0.782913i \(0.713733\pi\)
\(882\) 0 0
\(883\) 999070. 1.28137 0.640685 0.767804i \(-0.278651\pi\)
0.640685 + 0.767804i \(0.278651\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.08316e6i 1.37672i 0.725367 + 0.688362i \(0.241670\pi\)
−0.725367 + 0.688362i \(0.758330\pi\)
\(888\) 0 0
\(889\) 597763. 0.756355
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 93946.4i − 0.117809i
\(894\) 0 0
\(895\) 1.28698e6 1.60666
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 427774.i 0.529292i
\(900\) 0 0
\(901\) 859491. 1.05875
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1.37771e6i − 1.68213i
\(906\) 0 0
\(907\) −1.27685e6 −1.55212 −0.776061 0.630658i \(-0.782785\pi\)
−0.776061 + 0.630658i \(0.782785\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 273486.i − 0.329532i −0.986333 0.164766i \(-0.947313\pi\)
0.986333 0.164766i \(-0.0526869\pi\)
\(912\) 0 0
\(913\) −534381. −0.641076
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 94256.7i − 0.112092i
\(918\) 0 0
\(919\) −1.15882e6 −1.37210 −0.686051 0.727553i \(-0.740657\pi\)
−0.686051 + 0.727553i \(0.740657\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 292709.i − 0.343584i
\(924\) 0 0
\(925\) −522611. −0.610795
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 852706.i 0.988025i 0.869455 + 0.494012i \(0.164470\pi\)
−0.869455 + 0.494012i \(0.835530\pi\)
\(930\) 0 0
\(931\) 165220. 0.190618
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 775993.i 0.887636i
\(936\) 0 0
\(937\) 629989. 0.717552 0.358776 0.933424i \(-0.383194\pi\)
0.358776 + 0.933424i \(0.383194\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 423252.i 0.477991i 0.971021 + 0.238996i \(0.0768182\pi\)
−0.971021 + 0.238996i \(0.923182\pi\)
\(942\) 0 0
\(943\) −1.41950e6 −1.59629
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.39444e6i 1.55489i 0.628952 + 0.777444i \(0.283484\pi\)
−0.628952 + 0.777444i \(0.716516\pi\)
\(948\) 0 0
\(949\) 251895. 0.279696
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 24001.0i − 0.0264267i −0.999913 0.0132134i \(-0.995794\pi\)
0.999913 0.0132134i \(-0.00420607\pi\)
\(954\) 0 0
\(955\) 2.00195e6 2.19506
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 316723.i − 0.344384i
\(960\) 0 0
\(961\) −626786. −0.678692
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 145174.i 0.155896i
\(966\) 0 0
\(967\) −1.04406e6 −1.11654 −0.558268 0.829660i \(-0.688534\pi\)
−0.558268 + 0.829660i \(0.688534\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 605213.i − 0.641904i −0.947096 0.320952i \(-0.895997\pi\)
0.947096 0.320952i \(-0.104003\pi\)
\(972\) 0 0
\(973\) 1.09632e6 1.15801
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 48105.1i − 0.0503967i −0.999682 0.0251983i \(-0.991978\pi\)
0.999682 0.0251983i \(-0.00802173\pi\)
\(978\) 0 0
\(979\) 515540. 0.537895
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 123883.i 0.128205i 0.997943 + 0.0641024i \(0.0204184\pi\)
−0.997943 + 0.0641024i \(0.979582\pi\)
\(984\) 0 0
\(985\) −770794. −0.794448
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.09668e6i 1.12121i
\(990\) 0 0
\(991\) −851418. −0.866953 −0.433477 0.901165i \(-0.642713\pi\)
−0.433477 + 0.901165i \(0.642713\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1.75783e6i − 1.77555i
\(996\) 0 0
\(997\) −1.60305e6 −1.61271 −0.806355 0.591432i \(-0.798563\pi\)
−0.806355 + 0.591432i \(0.798563\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.5.e.c.161.6 6
3.2 odd 2 inner 1296.5.e.c.161.1 6
4.3 odd 2 81.5.b.a.80.4 6
9.2 odd 6 432.5.q.a.17.3 6
9.4 even 3 432.5.q.a.305.3 6
9.5 odd 6 144.5.q.a.65.1 6
9.7 even 3 144.5.q.a.113.1 6
12.11 even 2 81.5.b.a.80.3 6
36.7 odd 6 9.5.d.a.5.2 yes 6
36.11 even 6 27.5.d.a.17.2 6
36.23 even 6 9.5.d.a.2.2 6
36.31 odd 6 27.5.d.a.8.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.2 6 36.23 even 6
9.5.d.a.5.2 yes 6 36.7 odd 6
27.5.d.a.8.2 6 36.31 odd 6
27.5.d.a.17.2 6 36.11 even 6
81.5.b.a.80.3 6 12.11 even 2
81.5.b.a.80.4 6 4.3 odd 2
144.5.q.a.65.1 6 9.5 odd 6
144.5.q.a.113.1 6 9.7 even 3
432.5.q.a.17.3 6 9.2 odd 6
432.5.q.a.305.3 6 9.4 even 3
1296.5.e.c.161.1 6 3.2 odd 2 inner
1296.5.e.c.161.6 6 1.1 even 1 trivial