Properties

Label 1296.5.e.c.161.5
Level $1296$
Weight $5$
Character 1296.161
Analytic conductor $133.967$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,5,Mod(161,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.161");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.5
Root \(-1.28901 - 2.23263i\) of defining polynomial
Character \(\chi\) \(=\) 1296.161
Dual form 1296.5.e.c.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0226i q^{5} -72.4837 q^{7} +96.1576i q^{11} +153.906 q^{13} -72.7905i q^{17} +190.660 q^{19} +14.4552i q^{23} +368.276 q^{25} -716.262i q^{29} +302.568 q^{31} -1161.38i q^{35} +826.277 q^{37} +556.119i q^{41} -892.680 q^{43} -3955.43i q^{47} +2852.89 q^{49} +1966.96i q^{53} -1540.69 q^{55} -5414.94i q^{59} -1712.42 q^{61} +2465.97i q^{65} +4634.49 q^{67} +6697.12i q^{71} -4823.86 q^{73} -6969.86i q^{77} +5728.79 q^{79} +2832.23i q^{83} +1166.29 q^{85} +14277.7i q^{89} -11155.7 q^{91} +3054.87i q^{95} +7165.31 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{7} + 12 q^{13} + 258 q^{19} + 546 q^{25} + 2580 q^{31} + 12 q^{37} - 570 q^{43} + 3726 q^{49} - 2016 q^{55} - 7260 q^{61} - 10110 q^{67} - 14622 q^{73} + 9528 q^{79} - 24732 q^{85} - 34836 q^{91}+ \cdots + 57918 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 16.0226i 0.640904i 0.947265 + 0.320452i \(0.103835\pi\)
−0.947265 + 0.320452i \(0.896165\pi\)
\(6\) 0 0
\(7\) −72.4837 −1.47926 −0.739630 0.673014i \(-0.764999\pi\)
−0.739630 + 0.673014i \(0.764999\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 96.1576i 0.794691i 0.917669 + 0.397345i \(0.130068\pi\)
−0.917669 + 0.397345i \(0.869932\pi\)
\(12\) 0 0
\(13\) 153.906 0.910686 0.455343 0.890316i \(-0.349517\pi\)
0.455343 + 0.890316i \(0.349517\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 72.7905i − 0.251870i −0.992038 0.125935i \(-0.959807\pi\)
0.992038 0.125935i \(-0.0401931\pi\)
\(18\) 0 0
\(19\) 190.660 0.528145 0.264072 0.964503i \(-0.414934\pi\)
0.264072 + 0.964503i \(0.414934\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 14.4552i 0.0273256i 0.999907 + 0.0136628i \(0.00434914\pi\)
−0.999907 + 0.0136628i \(0.995651\pi\)
\(24\) 0 0
\(25\) 368.276 0.589242
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 716.262i − 0.851679i −0.904799 0.425839i \(-0.859979\pi\)
0.904799 0.425839i \(-0.140021\pi\)
\(30\) 0 0
\(31\) 302.568 0.314847 0.157423 0.987531i \(-0.449681\pi\)
0.157423 + 0.987531i \(0.449681\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1161.38i − 0.948063i
\(36\) 0 0
\(37\) 826.277 0.603562 0.301781 0.953377i \(-0.402419\pi\)
0.301781 + 0.953377i \(0.402419\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 556.119i 0.330826i 0.986224 + 0.165413i \(0.0528958\pi\)
−0.986224 + 0.165413i \(0.947104\pi\)
\(42\) 0 0
\(43\) −892.680 −0.482791 −0.241395 0.970427i \(-0.577605\pi\)
−0.241395 + 0.970427i \(0.577605\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 3955.43i − 1.79060i −0.445465 0.895299i \(-0.646962\pi\)
0.445465 0.895299i \(-0.353038\pi\)
\(48\) 0 0
\(49\) 2852.89 1.18821
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1966.96i 0.700234i 0.936706 + 0.350117i \(0.113858\pi\)
−0.936706 + 0.350117i \(0.886142\pi\)
\(54\) 0 0
\(55\) −1540.69 −0.509320
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 5414.94i − 1.55557i −0.628530 0.777785i \(-0.716343\pi\)
0.628530 0.777785i \(-0.283657\pi\)
\(60\) 0 0
\(61\) −1712.42 −0.460204 −0.230102 0.973166i \(-0.573906\pi\)
−0.230102 + 0.973166i \(0.573906\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2465.97i 0.583663i
\(66\) 0 0
\(67\) 4634.49 1.03241 0.516205 0.856465i \(-0.327344\pi\)
0.516205 + 0.856465i \(0.327344\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6697.12i 1.32853i 0.747497 + 0.664265i \(0.231256\pi\)
−0.747497 + 0.664265i \(0.768744\pi\)
\(72\) 0 0
\(73\) −4823.86 −0.905208 −0.452604 0.891712i \(-0.649505\pi\)
−0.452604 + 0.891712i \(0.649505\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6969.86i − 1.17555i
\(78\) 0 0
\(79\) 5728.79 0.917929 0.458964 0.888455i \(-0.348221\pi\)
0.458964 + 0.888455i \(0.348221\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2832.23i 0.411124i 0.978644 + 0.205562i \(0.0659022\pi\)
−0.978644 + 0.205562i \(0.934098\pi\)
\(84\) 0 0
\(85\) 1166.29 0.161425
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14277.7i 1.80251i 0.433290 + 0.901255i \(0.357353\pi\)
−0.433290 + 0.901255i \(0.642647\pi\)
\(90\) 0 0
\(91\) −11155.7 −1.34714
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3054.87i 0.338490i
\(96\) 0 0
\(97\) 7165.31 0.761538 0.380769 0.924670i \(-0.375659\pi\)
0.380769 + 0.924670i \(0.375659\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1959.20i 0.192060i 0.995378 + 0.0960298i \(0.0306144\pi\)
−0.995378 + 0.0960298i \(0.969386\pi\)
\(102\) 0 0
\(103\) 5155.48 0.485953 0.242976 0.970032i \(-0.421876\pi\)
0.242976 + 0.970032i \(0.421876\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9117.08i 0.796321i 0.917316 + 0.398161i \(0.130351\pi\)
−0.917316 + 0.398161i \(0.869649\pi\)
\(108\) 0 0
\(109\) −16161.1 −1.36024 −0.680122 0.733099i \(-0.738073\pi\)
−0.680122 + 0.733099i \(0.738073\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 21099.2i 1.65238i 0.563393 + 0.826189i \(0.309496\pi\)
−0.563393 + 0.826189i \(0.690504\pi\)
\(114\) 0 0
\(115\) −231.611 −0.0175131
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5276.13i 0.372582i
\(120\) 0 0
\(121\) 5394.72 0.368467
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15914.9i 1.01855i
\(126\) 0 0
\(127\) 20660.9 1.28098 0.640489 0.767968i \(-0.278732\pi\)
0.640489 + 0.767968i \(0.278732\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 3201.45i − 0.186554i −0.995640 0.0932768i \(-0.970266\pi\)
0.995640 0.0932768i \(-0.0297342\pi\)
\(132\) 0 0
\(133\) −13819.8 −0.781263
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3871.92i 0.206293i 0.994666 + 0.103147i \(0.0328911\pi\)
−0.994666 + 0.103147i \(0.967109\pi\)
\(138\) 0 0
\(139\) 11679.2 0.604484 0.302242 0.953231i \(-0.402265\pi\)
0.302242 + 0.953231i \(0.402265\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14799.2i 0.723714i
\(144\) 0 0
\(145\) 11476.4 0.545844
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 15091.8i − 0.679778i −0.940466 0.339889i \(-0.889610\pi\)
0.940466 0.339889i \(-0.110390\pi\)
\(150\) 0 0
\(151\) −30255.3 −1.32693 −0.663465 0.748207i \(-0.730915\pi\)
−0.663465 + 0.748207i \(0.730915\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4847.92i 0.201787i
\(156\) 0 0
\(157\) 20622.7 0.836656 0.418328 0.908296i \(-0.362616\pi\)
0.418328 + 0.908296i \(0.362616\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1047.77i − 0.0404216i
\(162\) 0 0
\(163\) −39790.7 −1.49764 −0.748818 0.662776i \(-0.769378\pi\)
−0.748818 + 0.662776i \(0.769378\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 27450.7i 0.984283i 0.870515 + 0.492141i \(0.163786\pi\)
−0.870515 + 0.492141i \(0.836214\pi\)
\(168\) 0 0
\(169\) −4873.95 −0.170651
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 10079.7i − 0.336787i −0.985720 0.168393i \(-0.946142\pi\)
0.985720 0.168393i \(-0.0538578\pi\)
\(174\) 0 0
\(175\) −26694.0 −0.871642
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1215.45i 0.0379343i 0.999820 + 0.0189672i \(0.00603779\pi\)
−0.999820 + 0.0189672i \(0.993962\pi\)
\(180\) 0 0
\(181\) 28359.9 0.865661 0.432831 0.901475i \(-0.357515\pi\)
0.432831 + 0.901475i \(0.357515\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13239.1i 0.386826i
\(186\) 0 0
\(187\) 6999.36 0.200159
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 9751.84i − 0.267313i −0.991028 0.133656i \(-0.957328\pi\)
0.991028 0.133656i \(-0.0426719\pi\)
\(192\) 0 0
\(193\) −53402.8 −1.43367 −0.716836 0.697242i \(-0.754410\pi\)
−0.716836 + 0.697242i \(0.754410\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 68537.7i − 1.76603i −0.469349 0.883013i \(-0.655511\pi\)
0.469349 0.883013i \(-0.344489\pi\)
\(198\) 0 0
\(199\) 8237.42 0.208010 0.104005 0.994577i \(-0.466834\pi\)
0.104005 + 0.994577i \(0.466834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 51917.3i 1.25985i
\(204\) 0 0
\(205\) −8910.47 −0.212028
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18333.4i 0.419712i
\(210\) 0 0
\(211\) −40787.4 −0.916138 −0.458069 0.888917i \(-0.651459\pi\)
−0.458069 + 0.888917i \(0.651459\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 14303.1i − 0.309423i
\(216\) 0 0
\(217\) −21931.2 −0.465740
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 11202.9i − 0.229375i
\(222\) 0 0
\(223\) 59919.6 1.20492 0.602461 0.798148i \(-0.294187\pi\)
0.602461 + 0.798148i \(0.294187\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 98810.4i 1.91757i 0.284134 + 0.958785i \(0.408294\pi\)
−0.284134 + 0.958785i \(0.591706\pi\)
\(228\) 0 0
\(229\) −5317.94 −0.101408 −0.0507040 0.998714i \(-0.516147\pi\)
−0.0507040 + 0.998714i \(0.516147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18467.8i 0.340176i 0.985429 + 0.170088i \(0.0544052\pi\)
−0.985429 + 0.170088i \(0.945595\pi\)
\(234\) 0 0
\(235\) 63376.3 1.14760
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 25846.2i − 0.452482i −0.974071 0.226241i \(-0.927356\pi\)
0.974071 0.226241i \(-0.0726437\pi\)
\(240\) 0 0
\(241\) 83072.3 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 45710.7i 0.761527i
\(246\) 0 0
\(247\) 29343.8 0.480974
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 49051.6i 0.778585i 0.921114 + 0.389292i \(0.127280\pi\)
−0.921114 + 0.389292i \(0.872720\pi\)
\(252\) 0 0
\(253\) −1389.98 −0.0217154
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 97105.7i 1.47021i 0.677955 + 0.735104i \(0.262867\pi\)
−0.677955 + 0.735104i \(0.737133\pi\)
\(258\) 0 0
\(259\) −59891.6 −0.892825
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 41478.0i 0.599662i 0.953992 + 0.299831i \(0.0969303\pi\)
−0.953992 + 0.299831i \(0.903070\pi\)
\(264\) 0 0
\(265\) −31515.8 −0.448783
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 115737.i 1.59944i 0.600370 + 0.799722i \(0.295020\pi\)
−0.600370 + 0.799722i \(0.704980\pi\)
\(270\) 0 0
\(271\) 5077.71 0.0691400 0.0345700 0.999402i \(-0.488994\pi\)
0.0345700 + 0.999402i \(0.488994\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 35412.5i 0.468265i
\(276\) 0 0
\(277\) −42385.8 −0.552409 −0.276205 0.961099i \(-0.589077\pi\)
−0.276205 + 0.961099i \(0.589077\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 41456.6i 0.525027i 0.964928 + 0.262513i \(0.0845514\pi\)
−0.964928 + 0.262513i \(0.915449\pi\)
\(282\) 0 0
\(283\) −38388.0 −0.479316 −0.239658 0.970857i \(-0.577035\pi\)
−0.239658 + 0.970857i \(0.577035\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 40309.6i − 0.489378i
\(288\) 0 0
\(289\) 78222.5 0.936561
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 12978.2i − 0.151175i −0.997139 0.0755876i \(-0.975917\pi\)
0.997139 0.0755876i \(-0.0240833\pi\)
\(294\) 0 0
\(295\) 86761.4 0.996971
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2224.75i 0.0248850i
\(300\) 0 0
\(301\) 64704.8 0.714173
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 27437.4i − 0.294947i
\(306\) 0 0
\(307\) 126105. 1.33799 0.668997 0.743265i \(-0.266724\pi\)
0.668997 + 0.743265i \(0.266724\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 99803.5i 1.03187i 0.856628 + 0.515935i \(0.172555\pi\)
−0.856628 + 0.515935i \(0.827445\pi\)
\(312\) 0 0
\(313\) −2225.35 −0.0227148 −0.0113574 0.999936i \(-0.503615\pi\)
−0.0113574 + 0.999936i \(0.503615\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 168069.i 1.67251i 0.548342 + 0.836254i \(0.315259\pi\)
−0.548342 + 0.836254i \(0.684741\pi\)
\(318\) 0 0
\(319\) 68874.0 0.676821
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 13878.3i − 0.133024i
\(324\) 0 0
\(325\) 56679.9 0.536615
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 286704.i 2.64876i
\(330\) 0 0
\(331\) −6758.86 −0.0616904 −0.0308452 0.999524i \(-0.509820\pi\)
−0.0308452 + 0.999524i \(0.509820\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 74256.6i 0.661676i
\(336\) 0 0
\(337\) −222093. −1.95557 −0.977787 0.209600i \(-0.932784\pi\)
−0.977787 + 0.209600i \(0.932784\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 29094.2i 0.250206i
\(342\) 0 0
\(343\) −32754.4 −0.278408
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 162548.i 1.34996i 0.737835 + 0.674981i \(0.235848\pi\)
−0.737835 + 0.674981i \(0.764152\pi\)
\(348\) 0 0
\(349\) −72696.9 −0.596850 −0.298425 0.954433i \(-0.596461\pi\)
−0.298425 + 0.954433i \(0.596461\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 128629.i − 1.03226i −0.856509 0.516131i \(-0.827372\pi\)
0.856509 0.516131i \(-0.172628\pi\)
\(354\) 0 0
\(355\) −107305. −0.851461
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 95302.8i 0.739463i 0.929139 + 0.369732i \(0.120550\pi\)
−0.929139 + 0.369732i \(0.879450\pi\)
\(360\) 0 0
\(361\) −93969.7 −0.721063
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 77290.7i − 0.580152i
\(366\) 0 0
\(367\) −104146. −0.773233 −0.386616 0.922241i \(-0.626356\pi\)
−0.386616 + 0.922241i \(0.626356\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 142572.i − 1.03583i
\(372\) 0 0
\(373\) 245831. 1.76693 0.883463 0.468501i \(-0.155206\pi\)
0.883463 + 0.468501i \(0.155206\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 110237.i − 0.775612i
\(378\) 0 0
\(379\) −200830. −1.39814 −0.699070 0.715053i \(-0.746403\pi\)
−0.699070 + 0.715053i \(0.746403\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 135338.i − 0.922615i −0.887240 0.461308i \(-0.847380\pi\)
0.887240 0.461308i \(-0.152620\pi\)
\(384\) 0 0
\(385\) 111675. 0.753417
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 202177.i 1.33608i 0.744126 + 0.668039i \(0.232866\pi\)
−0.744126 + 0.668039i \(0.767134\pi\)
\(390\) 0 0
\(391\) 1052.20 0.00688251
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 91790.2i 0.588304i
\(396\) 0 0
\(397\) 102384. 0.649608 0.324804 0.945781i \(-0.394702\pi\)
0.324804 + 0.945781i \(0.394702\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 90097.2i − 0.560302i −0.959956 0.280151i \(-0.909615\pi\)
0.959956 0.280151i \(-0.0903846\pi\)
\(402\) 0 0
\(403\) 46567.0 0.286727
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 79452.8i 0.479645i
\(408\) 0 0
\(409\) 149722. 0.895033 0.447517 0.894276i \(-0.352309\pi\)
0.447517 + 0.894276i \(0.352309\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 392495.i 2.30109i
\(414\) 0 0
\(415\) −45379.7 −0.263491
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 126351.i − 0.719697i −0.933011 0.359848i \(-0.882828\pi\)
0.933011 0.359848i \(-0.117172\pi\)
\(420\) 0 0
\(421\) −215289. −1.21467 −0.607335 0.794446i \(-0.707762\pi\)
−0.607335 + 0.794446i \(0.707762\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 26807.0i − 0.148413i
\(426\) 0 0
\(427\) 124123. 0.680762
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 121972.i − 0.656607i −0.944572 0.328304i \(-0.893523\pi\)
0.944572 0.328304i \(-0.106477\pi\)
\(432\) 0 0
\(433\) −152419. −0.812951 −0.406475 0.913662i \(-0.633242\pi\)
−0.406475 + 0.913662i \(0.633242\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2756.04i 0.0144319i
\(438\) 0 0
\(439\) −231128. −1.19929 −0.599643 0.800267i \(-0.704691\pi\)
−0.599643 + 0.800267i \(0.704691\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 20185.7i − 0.102858i −0.998677 0.0514289i \(-0.983622\pi\)
0.998677 0.0514289i \(-0.0163775\pi\)
\(444\) 0 0
\(445\) −228766. −1.15524
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 92962.8i 0.461123i 0.973058 + 0.230561i \(0.0740562\pi\)
−0.973058 + 0.230561i \(0.925944\pi\)
\(450\) 0 0
\(451\) −53475.0 −0.262905
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 178743.i − 0.863388i
\(456\) 0 0
\(457\) 220887. 1.05764 0.528819 0.848735i \(-0.322635\pi\)
0.528819 + 0.848735i \(0.322635\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 106195.i − 0.499690i −0.968286 0.249845i \(-0.919620\pi\)
0.968286 0.249845i \(-0.0803797\pi\)
\(462\) 0 0
\(463\) 68179.9 0.318049 0.159025 0.987275i \(-0.449165\pi\)
0.159025 + 0.987275i \(0.449165\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 224350.i 1.02871i 0.857578 + 0.514353i \(0.171968\pi\)
−0.857578 + 0.514353i \(0.828032\pi\)
\(468\) 0 0
\(469\) −335925. −1.52720
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 85838.0i − 0.383669i
\(474\) 0 0
\(475\) 70215.6 0.311205
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 109169.i − 0.475802i −0.971289 0.237901i \(-0.923541\pi\)
0.971289 0.237901i \(-0.0764594\pi\)
\(480\) 0 0
\(481\) 127169. 0.549656
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 114807.i 0.488073i
\(486\) 0 0
\(487\) −106309. −0.448240 −0.224120 0.974562i \(-0.571951\pi\)
−0.224120 + 0.974562i \(0.571951\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 74446.6i 0.308803i 0.988008 + 0.154402i \(0.0493450\pi\)
−0.988008 + 0.154402i \(0.950655\pi\)
\(492\) 0 0
\(493\) −52137.1 −0.214513
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 485432.i − 1.96524i
\(498\) 0 0
\(499\) 111207. 0.446612 0.223306 0.974748i \(-0.428315\pi\)
0.223306 + 0.974748i \(0.428315\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 115897.i 0.458077i 0.973417 + 0.229038i \(0.0735581\pi\)
−0.973417 + 0.229038i \(0.926442\pi\)
\(504\) 0 0
\(505\) −31391.5 −0.123092
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 196644.i − 0.759007i −0.925190 0.379503i \(-0.876095\pi\)
0.925190 0.379503i \(-0.123905\pi\)
\(510\) 0 0
\(511\) 349651. 1.33904
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 82604.1i 0.311449i
\(516\) 0 0
\(517\) 380345. 1.42297
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 299306.i − 1.10266i −0.834289 0.551328i \(-0.814121\pi\)
0.834289 0.551328i \(-0.185879\pi\)
\(522\) 0 0
\(523\) 162892. 0.595520 0.297760 0.954641i \(-0.403760\pi\)
0.297760 + 0.954641i \(0.403760\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 22024.1i − 0.0793006i
\(528\) 0 0
\(529\) 279632. 0.999253
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 85590.0i 0.301279i
\(534\) 0 0
\(535\) −146079. −0.510365
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 274327.i 0.944257i
\(540\) 0 0
\(541\) −62918.7 −0.214974 −0.107487 0.994207i \(-0.534280\pi\)
−0.107487 + 0.994207i \(0.534280\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 258942.i − 0.871786i
\(546\) 0 0
\(547\) 14807.1 0.0494876 0.0247438 0.999694i \(-0.492123\pi\)
0.0247438 + 0.999694i \(0.492123\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 136563.i − 0.449810i
\(552\) 0 0
\(553\) −415244. −1.35785
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 254392.i − 0.819962i −0.912094 0.409981i \(-0.865535\pi\)
0.912094 0.409981i \(-0.134465\pi\)
\(558\) 0 0
\(559\) −137389. −0.439671
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 93307.5i − 0.294374i −0.989109 0.147187i \(-0.952978\pi\)
0.989109 0.147187i \(-0.0470220\pi\)
\(564\) 0 0
\(565\) −338064. −1.05902
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 158024.i 0.488089i 0.969764 + 0.244045i \(0.0784744\pi\)
−0.969764 + 0.244045i \(0.921526\pi\)
\(570\) 0 0
\(571\) 438375. 1.34454 0.672270 0.740306i \(-0.265319\pi\)
0.672270 + 0.740306i \(0.265319\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5323.52i 0.0161014i
\(576\) 0 0
\(577\) 214770. 0.645094 0.322547 0.946554i \(-0.395461\pi\)
0.322547 + 0.946554i \(0.395461\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 205291.i − 0.608158i
\(582\) 0 0
\(583\) −189138. −0.556469
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 656412.i 1.90502i 0.304502 + 0.952512i \(0.401510\pi\)
−0.304502 + 0.952512i \(0.598490\pi\)
\(588\) 0 0
\(589\) 57687.6 0.166285
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 118369.i 0.336612i 0.985735 + 0.168306i \(0.0538296\pi\)
−0.985735 + 0.168306i \(0.946170\pi\)
\(594\) 0 0
\(595\) −84537.3 −0.238789
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 354139.i 0.987006i 0.869744 + 0.493503i \(0.164284\pi\)
−0.869744 + 0.493503i \(0.835716\pi\)
\(600\) 0 0
\(601\) −595639. −1.64905 −0.824526 0.565824i \(-0.808558\pi\)
−0.824526 + 0.565824i \(0.808558\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 86437.5i 0.236152i
\(606\) 0 0
\(607\) −9721.62 −0.0263853 −0.0131926 0.999913i \(-0.504199\pi\)
−0.0131926 + 0.999913i \(0.504199\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 608765.i − 1.63067i
\(612\) 0 0
\(613\) 194450. 0.517473 0.258736 0.965948i \(-0.416694\pi\)
0.258736 + 0.965948i \(0.416694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 487639.i 1.28094i 0.767984 + 0.640469i \(0.221260\pi\)
−0.767984 + 0.640469i \(0.778740\pi\)
\(618\) 0 0
\(619\) −17256.5 −0.0450371 −0.0225185 0.999746i \(-0.507168\pi\)
−0.0225185 + 0.999746i \(0.507168\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 1.03490e6i − 2.66638i
\(624\) 0 0
\(625\) −24825.0 −0.0635520
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 60145.1i − 0.152019i
\(630\) 0 0
\(631\) 429836. 1.07955 0.539777 0.841808i \(-0.318509\pi\)
0.539777 + 0.841808i \(0.318509\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 331041.i 0.820984i
\(636\) 0 0
\(637\) 439076. 1.08208
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32308.0i 0.0786310i 0.999227 + 0.0393155i \(0.0125177\pi\)
−0.999227 + 0.0393155i \(0.987482\pi\)
\(642\) 0 0
\(643\) −277048. −0.670091 −0.335045 0.942202i \(-0.608752\pi\)
−0.335045 + 0.942202i \(0.608752\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 125452.i − 0.299689i −0.988710 0.149844i \(-0.952123\pi\)
0.988710 0.149844i \(-0.0478773\pi\)
\(648\) 0 0
\(649\) 520687. 1.23620
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 283982.i 0.665985i 0.942930 + 0.332992i \(0.108058\pi\)
−0.942930 + 0.332992i \(0.891942\pi\)
\(654\) 0 0
\(655\) 51295.5 0.119563
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 359272.i 0.827280i 0.910440 + 0.413640i \(0.135743\pi\)
−0.910440 + 0.413640i \(0.864257\pi\)
\(660\) 0 0
\(661\) 197804. 0.452723 0.226362 0.974043i \(-0.427317\pi\)
0.226362 + 0.974043i \(0.427317\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 221429.i − 0.500715i
\(666\) 0 0
\(667\) 10353.7 0.0232726
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 164662.i − 0.365720i
\(672\) 0 0
\(673\) 238072. 0.525628 0.262814 0.964847i \(-0.415349\pi\)
0.262814 + 0.964847i \(0.415349\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 250150.i − 0.545787i −0.962044 0.272894i \(-0.912019\pi\)
0.962044 0.272894i \(-0.0879807\pi\)
\(678\) 0 0
\(679\) −519368. −1.12651
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 267358.i 0.573129i 0.958061 + 0.286564i \(0.0925132\pi\)
−0.958061 + 0.286564i \(0.907487\pi\)
\(684\) 0 0
\(685\) −62038.2 −0.132214
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 302727.i 0.637694i
\(690\) 0 0
\(691\) −336686. −0.705129 −0.352565 0.935787i \(-0.614690\pi\)
−0.352565 + 0.935787i \(0.614690\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 187132.i 0.387417i
\(696\) 0 0
\(697\) 40480.2 0.0833253
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 635795.i − 1.29384i −0.762557 0.646921i \(-0.776056\pi\)
0.762557 0.646921i \(-0.223944\pi\)
\(702\) 0 0
\(703\) 157538. 0.318768
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 142010.i − 0.284106i
\(708\) 0 0
\(709\) 431026. 0.857455 0.428728 0.903434i \(-0.358962\pi\)
0.428728 + 0.903434i \(0.358962\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4373.69i 0.00860337i
\(714\) 0 0
\(715\) −237122. −0.463831
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 798370.i − 1.54435i −0.635409 0.772176i \(-0.719168\pi\)
0.635409 0.772176i \(-0.280832\pi\)
\(720\) 0 0
\(721\) −373688. −0.718850
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 263782.i − 0.501845i
\(726\) 0 0
\(727\) −317113. −0.599992 −0.299996 0.953940i \(-0.596985\pi\)
−0.299996 + 0.953940i \(0.596985\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 64978.7i 0.121601i
\(732\) 0 0
\(733\) −977843. −1.81996 −0.909979 0.414654i \(-0.863902\pi\)
−0.909979 + 0.414654i \(0.863902\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 445641.i 0.820446i
\(738\) 0 0
\(739\) 392565. 0.718825 0.359412 0.933179i \(-0.382977\pi\)
0.359412 + 0.933179i \(0.382977\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1.03860e6i − 1.88135i −0.339314 0.940673i \(-0.610195\pi\)
0.339314 0.940673i \(-0.389805\pi\)
\(744\) 0 0
\(745\) 241809. 0.435673
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 660840.i − 1.17797i
\(750\) 0 0
\(751\) −319565. −0.566604 −0.283302 0.959031i \(-0.591430\pi\)
−0.283302 + 0.959031i \(0.591430\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 484769.i − 0.850435i
\(756\) 0 0
\(757\) 500321. 0.873085 0.436543 0.899684i \(-0.356203\pi\)
0.436543 + 0.899684i \(0.356203\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 904875.i − 1.56250i −0.624220 0.781249i \(-0.714583\pi\)
0.624220 0.781249i \(-0.285417\pi\)
\(762\) 0 0
\(763\) 1.17141e6 2.01215
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 833392.i − 1.41664i
\(768\) 0 0
\(769\) 143377. 0.242453 0.121227 0.992625i \(-0.461317\pi\)
0.121227 + 0.992625i \(0.461317\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 710063.i − 1.18833i −0.804342 0.594166i \(-0.797482\pi\)
0.804342 0.594166i \(-0.202518\pi\)
\(774\) 0 0
\(775\) 111428. 0.185521
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 106030.i 0.174724i
\(780\) 0 0
\(781\) −643979. −1.05577
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 330430.i 0.536216i
\(786\) 0 0
\(787\) 601711. 0.971490 0.485745 0.874101i \(-0.338548\pi\)
0.485745 + 0.874101i \(0.338548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1.52935e6i − 2.44429i
\(792\) 0 0
\(793\) −263552. −0.419102
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 429811.i − 0.676645i −0.941030 0.338322i \(-0.890141\pi\)
0.941030 0.338322i \(-0.109859\pi\)
\(798\) 0 0
\(799\) −287918. −0.450999
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 463850.i − 0.719361i
\(804\) 0 0
\(805\) 16788.0 0.0259064
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 629639.i − 0.962042i −0.876709 0.481021i \(-0.840266\pi\)
0.876709 0.481021i \(-0.159734\pi\)
\(810\) 0 0
\(811\) −577760. −0.878428 −0.439214 0.898383i \(-0.644743\pi\)
−0.439214 + 0.898383i \(0.644743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 637550.i − 0.959841i
\(816\) 0 0
\(817\) −170199. −0.254984
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 44719.6i − 0.0663455i −0.999450 0.0331727i \(-0.989439\pi\)
0.999450 0.0331727i \(-0.0105612\pi\)
\(822\) 0 0
\(823\) 292578. 0.431958 0.215979 0.976398i \(-0.430706\pi\)
0.215979 + 0.976398i \(0.430706\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 806491.i 1.17920i 0.807694 + 0.589601i \(0.200715\pi\)
−0.807694 + 0.589601i \(0.799285\pi\)
\(828\) 0 0
\(829\) 204904. 0.298154 0.149077 0.988826i \(-0.452370\pi\)
0.149077 + 0.988826i \(0.452370\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 207663.i − 0.299274i
\(834\) 0 0
\(835\) −439831. −0.630831
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 771105.i 1.09544i 0.836661 + 0.547721i \(0.184505\pi\)
−0.836661 + 0.547721i \(0.815495\pi\)
\(840\) 0 0
\(841\) 194250. 0.274643
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 78093.4i − 0.109371i
\(846\) 0 0
\(847\) −391030. −0.545058
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11944.0i 0.0164927i
\(852\) 0 0
\(853\) 1.08237e6 1.48757 0.743784 0.668420i \(-0.233029\pi\)
0.743784 + 0.668420i \(0.233029\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 533345.i 0.726183i 0.931753 + 0.363092i \(0.118279\pi\)
−0.931753 + 0.363092i \(0.881721\pi\)
\(858\) 0 0
\(859\) −1.13105e6 −1.53283 −0.766417 0.642343i \(-0.777962\pi\)
−0.766417 + 0.642343i \(0.777962\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 110025.i − 0.147730i −0.997268 0.0738649i \(-0.976467\pi\)
0.997268 0.0738649i \(-0.0235334\pi\)
\(864\) 0 0
\(865\) 161503. 0.215848
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 550867.i 0.729470i
\(870\) 0 0
\(871\) 713275. 0.940202
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 1.15357e6i − 1.50670i
\(876\) 0 0
\(877\) −408753. −0.531450 −0.265725 0.964049i \(-0.585611\pi\)
−0.265725 + 0.964049i \(0.585611\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 235809.i − 0.303815i −0.988395 0.151907i \(-0.951458\pi\)
0.988395 0.151907i \(-0.0485416\pi\)
\(882\) 0 0
\(883\) 273719. 0.351061 0.175531 0.984474i \(-0.443836\pi\)
0.175531 + 0.984474i \(0.443836\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 371896.i − 0.472687i −0.971670 0.236344i \(-0.924051\pi\)
0.971670 0.236344i \(-0.0759491\pi\)
\(888\) 0 0
\(889\) −1.49758e6 −1.89490
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 754144.i − 0.945695i
\(894\) 0 0
\(895\) −19474.7 −0.0243122
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 216718.i − 0.268148i
\(900\) 0 0
\(901\) 143176. 0.176368
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 454400.i 0.554806i
\(906\) 0 0
\(907\) 143931. 0.174960 0.0874801 0.996166i \(-0.472119\pi\)
0.0874801 + 0.996166i \(0.472119\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 891661.i − 1.07439i −0.843457 0.537196i \(-0.819483\pi\)
0.843457 0.537196i \(-0.180517\pi\)
\(912\) 0 0
\(913\) −272340. −0.326716
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 232053.i 0.275961i
\(918\) 0 0
\(919\) 582156. 0.689300 0.344650 0.938731i \(-0.387998\pi\)
0.344650 + 0.938731i \(0.387998\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.03073e6i 1.20987i
\(924\) 0 0
\(925\) 304298. 0.355644
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 771371.i 0.893782i 0.894588 + 0.446891i \(0.147469\pi\)
−0.894588 + 0.446891i \(0.852531\pi\)
\(930\) 0 0
\(931\) 543932. 0.627546
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 112148.i 0.128283i
\(936\) 0 0
\(937\) −1.46097e6 −1.66403 −0.832015 0.554753i \(-0.812813\pi\)
−0.832015 + 0.554753i \(0.812813\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 169346.i 0.191248i 0.995418 + 0.0956240i \(0.0304846\pi\)
−0.995418 + 0.0956240i \(0.969515\pi\)
\(942\) 0 0
\(943\) −8038.83 −0.00904002
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 593888.i 0.662224i 0.943591 + 0.331112i \(0.107424\pi\)
−0.943591 + 0.331112i \(0.892576\pi\)
\(948\) 0 0
\(949\) −742420. −0.824361
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.25477e6i 1.38159i 0.723050 + 0.690796i \(0.242740\pi\)
−0.723050 + 0.690796i \(0.757260\pi\)
\(954\) 0 0
\(955\) 156250. 0.171322
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 280651.i − 0.305161i
\(960\) 0 0
\(961\) −831974. −0.900872
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 855652.i − 0.918846i
\(966\) 0 0
\(967\) 1.05786e6 1.13129 0.565645 0.824649i \(-0.308627\pi\)
0.565645 + 0.824649i \(0.308627\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 775745.i 0.822774i 0.911461 + 0.411387i \(0.134956\pi\)
−0.911461 + 0.411387i \(0.865044\pi\)
\(972\) 0 0
\(973\) −846555. −0.894189
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 496516.i − 0.520168i −0.965586 0.260084i \(-0.916250\pi\)
0.965586 0.260084i \(-0.0837503\pi\)
\(978\) 0 0
\(979\) −1.37291e6 −1.43244
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 300964.i 0.311464i 0.987799 + 0.155732i \(0.0497736\pi\)
−0.987799 + 0.155732i \(0.950226\pi\)
\(984\) 0 0
\(985\) 1.09815e6 1.13185
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 12903.9i − 0.0131925i
\(990\) 0 0
\(991\) −1.70094e6 −1.73197 −0.865987 0.500067i \(-0.833309\pi\)
−0.865987 + 0.500067i \(0.833309\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 131985.i 0.133315i
\(996\) 0 0
\(997\) −625837. −0.629609 −0.314805 0.949156i \(-0.601939\pi\)
−0.314805 + 0.949156i \(0.601939\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.5.e.c.161.5 6
3.2 odd 2 inner 1296.5.e.c.161.2 6
4.3 odd 2 81.5.b.a.80.2 6
9.2 odd 6 144.5.q.a.113.3 6
9.4 even 3 144.5.q.a.65.3 6
9.5 odd 6 432.5.q.a.305.1 6
9.7 even 3 432.5.q.a.17.1 6
12.11 even 2 81.5.b.a.80.5 6
36.7 odd 6 27.5.d.a.17.1 6
36.11 even 6 9.5.d.a.5.3 yes 6
36.23 even 6 27.5.d.a.8.1 6
36.31 odd 6 9.5.d.a.2.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.3 6 36.31 odd 6
9.5.d.a.5.3 yes 6 36.11 even 6
27.5.d.a.8.1 6 36.23 even 6
27.5.d.a.17.1 6 36.7 odd 6
81.5.b.a.80.2 6 4.3 odd 2
81.5.b.a.80.5 6 12.11 even 2
144.5.q.a.65.3 6 9.4 even 3
144.5.q.a.113.3 6 9.2 odd 6
432.5.q.a.17.1 6 9.7 even 3
432.5.q.a.305.1 6 9.5 odd 6
1296.5.e.c.161.2 6 3.2 odd 2 inner
1296.5.e.c.161.5 6 1.1 even 1 trivial