Properties

Label 1296.5.e.c.161.3
Level $1296$
Weight $5$
Character 1296.161
Analytic conductor $133.967$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,5,Mod(161,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.161");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.39400128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.3
Root \(1.89154 - 3.27625i\) of defining polynomial
Character \(\chi\) \(=\) 1296.161
Dual form 1296.5.e.c.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.7830i q^{5} +53.2728 q^{7} -124.971i q^{11} -74.6104 q^{13} -7.70989i q^{17} +54.1307 q^{19} +399.954i q^{23} +486.161 q^{25} -540.653i q^{29} +1532.17 q^{31} -627.714i q^{35} -1719.10 q^{37} -1259.63i q^{41} +2607.79 q^{43} +800.034i q^{47} +436.996 q^{49} -4229.81i q^{53} -1472.54 q^{55} -3333.19i q^{59} -15.0169 q^{61} +879.134i q^{65} -5182.39 q^{67} +1924.16i q^{71} +949.554 q^{73} -6657.57i q^{77} +237.980 q^{79} +13165.9i q^{83} -90.8456 q^{85} -575.925i q^{89} -3974.71 q^{91} -637.822i q^{95} +15123.4 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{7} + 12 q^{13} + 258 q^{19} + 546 q^{25} + 2580 q^{31} + 12 q^{37} - 570 q^{43} + 3726 q^{49} - 2016 q^{55} - 7260 q^{61} - 10110 q^{67} - 14622 q^{73} + 9528 q^{79} - 24732 q^{85} - 34836 q^{91}+ \cdots + 57918 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 11.7830i − 0.471320i −0.971836 0.235660i \(-0.924275\pi\)
0.971836 0.235660i \(-0.0757252\pi\)
\(6\) 0 0
\(7\) 53.2728 1.08720 0.543600 0.839344i \(-0.317061\pi\)
0.543600 + 0.839344i \(0.317061\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 124.971i − 1.03282i −0.856341 0.516410i \(-0.827268\pi\)
0.856341 0.516410i \(-0.172732\pi\)
\(12\) 0 0
\(13\) −74.6104 −0.441482 −0.220741 0.975332i \(-0.570848\pi\)
−0.220741 + 0.975332i \(0.570848\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.70989i − 0.0266778i −0.999911 0.0133389i \(-0.995754\pi\)
0.999911 0.0133389i \(-0.00424603\pi\)
\(18\) 0 0
\(19\) 54.1307 0.149946 0.0749732 0.997186i \(-0.476113\pi\)
0.0749732 + 0.997186i \(0.476113\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 399.954i 0.756057i 0.925794 + 0.378029i \(0.123398\pi\)
−0.925794 + 0.378029i \(0.876602\pi\)
\(24\) 0 0
\(25\) 486.161 0.777858
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 540.653i − 0.642869i −0.946932 0.321435i \(-0.895835\pi\)
0.946932 0.321435i \(-0.104165\pi\)
\(30\) 0 0
\(31\) 1532.17 1.59435 0.797173 0.603751i \(-0.206328\pi\)
0.797173 + 0.603751i \(0.206328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 627.714i − 0.512419i
\(36\) 0 0
\(37\) −1719.10 −1.25574 −0.627868 0.778320i \(-0.716072\pi\)
−0.627868 + 0.778320i \(0.716072\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1259.63i − 0.749335i −0.927159 0.374668i \(-0.877757\pi\)
0.927159 0.374668i \(-0.122243\pi\)
\(42\) 0 0
\(43\) 2607.79 1.41038 0.705189 0.709020i \(-0.250862\pi\)
0.705189 + 0.709020i \(0.250862\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 800.034i 0.362170i 0.983467 + 0.181085i \(0.0579609\pi\)
−0.983467 + 0.181085i \(0.942039\pi\)
\(48\) 0 0
\(49\) 436.996 0.182006
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 4229.81i − 1.50581i −0.658131 0.752904i \(-0.728653\pi\)
0.658131 0.752904i \(-0.271347\pi\)
\(54\) 0 0
\(55\) −1472.54 −0.486789
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 3333.19i − 0.957538i −0.877941 0.478769i \(-0.841083\pi\)
0.877941 0.478769i \(-0.158917\pi\)
\(60\) 0 0
\(61\) −15.0169 −0.00403570 −0.00201785 0.999998i \(-0.500642\pi\)
−0.00201785 + 0.999998i \(0.500642\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 879.134i 0.208079i
\(66\) 0 0
\(67\) −5182.39 −1.15447 −0.577233 0.816580i \(-0.695867\pi\)
−0.577233 + 0.816580i \(0.695867\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1924.16i 0.381701i 0.981619 + 0.190851i \(0.0611246\pi\)
−0.981619 + 0.190851i \(0.938875\pi\)
\(72\) 0 0
\(73\) 949.554 0.178186 0.0890931 0.996023i \(-0.471603\pi\)
0.0890931 + 0.996023i \(0.471603\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6657.57i − 1.12288i
\(78\) 0 0
\(79\) 237.980 0.0381318 0.0190659 0.999818i \(-0.493931\pi\)
0.0190659 + 0.999818i \(0.493931\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13165.9i 1.91115i 0.294750 + 0.955574i \(0.404764\pi\)
−0.294750 + 0.955574i \(0.595236\pi\)
\(84\) 0 0
\(85\) −90.8456 −0.0125738
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 575.925i − 0.0727086i −0.999339 0.0363543i \(-0.988426\pi\)
0.999339 0.0363543i \(-0.0115745\pi\)
\(90\) 0 0
\(91\) −3974.71 −0.479979
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 637.822i − 0.0706728i
\(96\) 0 0
\(97\) 15123.4 1.60733 0.803667 0.595079i \(-0.202879\pi\)
0.803667 + 0.595079i \(0.202879\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11060.8i 1.08428i 0.840287 + 0.542141i \(0.182386\pi\)
−0.840287 + 0.542141i \(0.817614\pi\)
\(102\) 0 0
\(103\) 3562.92 0.335839 0.167920 0.985801i \(-0.446295\pi\)
0.167920 + 0.985801i \(0.446295\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 11432.7i − 0.998576i −0.866436 0.499288i \(-0.833595\pi\)
0.866436 0.499288i \(-0.166405\pi\)
\(108\) 0 0
\(109\) −4780.43 −0.402359 −0.201180 0.979554i \(-0.564478\pi\)
−0.201180 + 0.979554i \(0.564478\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 4491.39i − 0.351742i −0.984413 0.175871i \(-0.943726\pi\)
0.984413 0.175871i \(-0.0562741\pi\)
\(114\) 0 0
\(115\) 4712.66 0.356345
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 410.728i − 0.0290041i
\(120\) 0 0
\(121\) −976.812 −0.0667176
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 13092.8i − 0.837940i
\(126\) 0 0
\(127\) −13521.3 −0.838322 −0.419161 0.907912i \(-0.637676\pi\)
−0.419161 + 0.907912i \(0.637676\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3396.97i 0.197947i 0.995090 + 0.0989735i \(0.0315559\pi\)
−0.995090 + 0.0989735i \(0.968444\pi\)
\(132\) 0 0
\(133\) 2883.69 0.163022
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3823.19i 0.203697i 0.994800 + 0.101849i \(0.0324757\pi\)
−0.994800 + 0.101849i \(0.967524\pi\)
\(138\) 0 0
\(139\) −3476.63 −0.179940 −0.0899702 0.995944i \(-0.528677\pi\)
−0.0899702 + 0.995944i \(0.528677\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9324.16i 0.455971i
\(144\) 0 0
\(145\) −6370.51 −0.302997
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 8910.94i − 0.401376i −0.979655 0.200688i \(-0.935682\pi\)
0.979655 0.200688i \(-0.0643177\pi\)
\(150\) 0 0
\(151\) 9915.33 0.434864 0.217432 0.976076i \(-0.430232\pi\)
0.217432 + 0.976076i \(0.430232\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 18053.5i − 0.751447i
\(156\) 0 0
\(157\) 5646.94 0.229094 0.114547 0.993418i \(-0.463458\pi\)
0.114547 + 0.993418i \(0.463458\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21306.7i 0.821986i
\(162\) 0 0
\(163\) 2153.55 0.0810552 0.0405276 0.999178i \(-0.487096\pi\)
0.0405276 + 0.999178i \(0.487096\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 37020.2i − 1.32741i −0.747994 0.663706i \(-0.768983\pi\)
0.747994 0.663706i \(-0.231017\pi\)
\(168\) 0 0
\(169\) −22994.3 −0.805094
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 48585.4i − 1.62336i −0.584105 0.811678i \(-0.698554\pi\)
0.584105 0.811678i \(-0.301446\pi\)
\(174\) 0 0
\(175\) 25899.2 0.845687
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 47717.9i − 1.48928i −0.667468 0.744639i \(-0.732622\pi\)
0.667468 0.744639i \(-0.267378\pi\)
\(180\) 0 0
\(181\) −45767.2 −1.39700 −0.698502 0.715608i \(-0.746150\pi\)
−0.698502 + 0.715608i \(0.746150\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20256.2i 0.591854i
\(186\) 0 0
\(187\) −963.514 −0.0275534
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 46719.5i − 1.28065i −0.768103 0.640326i \(-0.778799\pi\)
0.768103 0.640326i \(-0.221201\pi\)
\(192\) 0 0
\(193\) −27207.8 −0.730430 −0.365215 0.930923i \(-0.619005\pi\)
−0.365215 + 0.930923i \(0.619005\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 64665.2i − 1.66624i −0.553090 0.833122i \(-0.686551\pi\)
0.553090 0.833122i \(-0.313449\pi\)
\(198\) 0 0
\(199\) 25841.3 0.652542 0.326271 0.945276i \(-0.394208\pi\)
0.326271 + 0.945276i \(0.394208\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 28802.1i − 0.698928i
\(204\) 0 0
\(205\) −14842.3 −0.353177
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6764.78i − 0.154868i
\(210\) 0 0
\(211\) −46058.7 −1.03454 −0.517269 0.855823i \(-0.673051\pi\)
−0.517269 + 0.855823i \(0.673051\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 30727.6i − 0.664739i
\(216\) 0 0
\(217\) 81622.8 1.73337
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 575.238i 0.0117778i
\(222\) 0 0
\(223\) −21911.1 −0.440610 −0.220305 0.975431i \(-0.570705\pi\)
−0.220305 + 0.975431i \(0.570705\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 49785.7i − 0.966168i −0.875574 0.483084i \(-0.839517\pi\)
0.875574 0.483084i \(-0.160483\pi\)
\(228\) 0 0
\(229\) 28521.0 0.543868 0.271934 0.962316i \(-0.412337\pi\)
0.271934 + 0.962316i \(0.412337\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 44050.2i 0.811403i 0.914006 + 0.405701i \(0.132973\pi\)
−0.914006 + 0.405701i \(0.867027\pi\)
\(234\) 0 0
\(235\) 9426.80 0.170698
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20575.2i 0.360203i 0.983648 + 0.180102i \(0.0576427\pi\)
−0.983648 + 0.180102i \(0.942357\pi\)
\(240\) 0 0
\(241\) −57917.5 −0.997185 −0.498593 0.866836i \(-0.666150\pi\)
−0.498593 + 0.866836i \(0.666150\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 5149.12i − 0.0857829i
\(246\) 0 0
\(247\) −4038.71 −0.0661986
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 54140.4i 0.859357i 0.902982 + 0.429679i \(0.141373\pi\)
−0.902982 + 0.429679i \(0.858627\pi\)
\(252\) 0 0
\(253\) 49982.8 0.780871
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 113764.i − 1.72242i −0.508248 0.861211i \(-0.669707\pi\)
0.508248 0.861211i \(-0.330293\pi\)
\(258\) 0 0
\(259\) −91581.5 −1.36524
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 44363.7i − 0.641381i −0.947184 0.320691i \(-0.896085\pi\)
0.947184 0.320691i \(-0.103915\pi\)
\(264\) 0 0
\(265\) −49839.9 −0.709717
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 4429.77i − 0.0612176i −0.999531 0.0306088i \(-0.990255\pi\)
0.999531 0.0306088i \(-0.00974461\pi\)
\(270\) 0 0
\(271\) 86111.9 1.17253 0.586266 0.810119i \(-0.300597\pi\)
0.586266 + 0.810119i \(0.300597\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 60756.1i − 0.803387i
\(276\) 0 0
\(277\) 70613.4 0.920297 0.460148 0.887842i \(-0.347796\pi\)
0.460148 + 0.887842i \(0.347796\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 149254.i − 1.89023i −0.326740 0.945114i \(-0.605950\pi\)
0.326740 0.945114i \(-0.394050\pi\)
\(282\) 0 0
\(283\) 83926.7 1.04792 0.523959 0.851743i \(-0.324454\pi\)
0.523959 + 0.851743i \(0.324454\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 67104.2i − 0.814678i
\(288\) 0 0
\(289\) 83461.6 0.999288
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 35903.0i 0.418211i 0.977893 + 0.209106i \(0.0670553\pi\)
−0.977893 + 0.209106i \(0.932945\pi\)
\(294\) 0 0
\(295\) −39275.0 −0.451307
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 29840.7i − 0.333785i
\(300\) 0 0
\(301\) 138924. 1.53336
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 176.944i 0.00190211i
\(306\) 0 0
\(307\) −7054.30 −0.0748475 −0.0374238 0.999299i \(-0.511915\pi\)
−0.0374238 + 0.999299i \(0.511915\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 85661.4i 0.885655i 0.896607 + 0.442827i \(0.146025\pi\)
−0.896607 + 0.442827i \(0.853975\pi\)
\(312\) 0 0
\(313\) 73442.5 0.749650 0.374825 0.927096i \(-0.377703\pi\)
0.374825 + 0.927096i \(0.377703\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 49239.6i 0.490000i 0.969523 + 0.245000i \(0.0787880\pi\)
−0.969523 + 0.245000i \(0.921212\pi\)
\(318\) 0 0
\(319\) −67566.1 −0.663968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 417.341i − 0.00400024i
\(324\) 0 0
\(325\) −36272.7 −0.343410
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 42620.1i 0.393752i
\(330\) 0 0
\(331\) 82011.1 0.748543 0.374271 0.927319i \(-0.377893\pi\)
0.374271 + 0.927319i \(0.377893\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 61064.1i 0.544122i
\(336\) 0 0
\(337\) −46982.9 −0.413694 −0.206847 0.978373i \(-0.566320\pi\)
−0.206847 + 0.978373i \(0.566320\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 191477.i − 1.64667i
\(342\) 0 0
\(343\) −104628. −0.889324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 44319.7i 0.368076i 0.982919 + 0.184038i \(0.0589170\pi\)
−0.982919 + 0.184038i \(0.941083\pi\)
\(348\) 0 0
\(349\) −186463. −1.53088 −0.765442 0.643504i \(-0.777480\pi\)
−0.765442 + 0.643504i \(0.777480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 169694.i − 1.36181i −0.732370 0.680907i \(-0.761586\pi\)
0.732370 0.680907i \(-0.238414\pi\)
\(354\) 0 0
\(355\) 22672.3 0.179903
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 69656.7i 0.540473i 0.962794 + 0.270236i \(0.0871019\pi\)
−0.962794 + 0.270236i \(0.912898\pi\)
\(360\) 0 0
\(361\) −127391. −0.977516
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 11188.6i − 0.0839827i
\(366\) 0 0
\(367\) 176168. 1.30796 0.653982 0.756510i \(-0.273097\pi\)
0.653982 + 0.756510i \(0.273097\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 225334.i − 1.63712i
\(372\) 0 0
\(373\) 67187.1 0.482912 0.241456 0.970412i \(-0.422375\pi\)
0.241456 + 0.970412i \(0.422375\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40338.3i 0.283815i
\(378\) 0 0
\(379\) −43976.9 −0.306158 −0.153079 0.988214i \(-0.548919\pi\)
−0.153079 + 0.988214i \(0.548919\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 185140.i − 1.26212i −0.775733 0.631062i \(-0.782619\pi\)
0.775733 0.631062i \(-0.217381\pi\)
\(384\) 0 0
\(385\) −78446.2 −0.529237
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 30442.6i − 0.201179i −0.994928 0.100589i \(-0.967927\pi\)
0.994928 0.100589i \(-0.0320728\pi\)
\(390\) 0 0
\(391\) 3083.60 0.0201699
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 2804.12i − 0.0179723i
\(396\) 0 0
\(397\) −235724. −1.49563 −0.747813 0.663910i \(-0.768896\pi\)
−0.747813 + 0.663910i \(0.768896\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 234208.i − 1.45651i −0.685308 0.728254i \(-0.740332\pi\)
0.685308 0.728254i \(-0.259668\pi\)
\(402\) 0 0
\(403\) −114316. −0.703874
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 214839.i 1.29695i
\(408\) 0 0
\(409\) −297786. −1.78015 −0.890076 0.455812i \(-0.849349\pi\)
−0.890076 + 0.455812i \(0.849349\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 177569.i − 1.04104i
\(414\) 0 0
\(415\) 155134. 0.900763
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 36874.2i − 0.210036i −0.994470 0.105018i \(-0.966510\pi\)
0.994470 0.105018i \(-0.0334901\pi\)
\(420\) 0 0
\(421\) 240610. 1.35753 0.678764 0.734356i \(-0.262516\pi\)
0.678764 + 0.734356i \(0.262516\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 3748.25i − 0.0207515i
\(426\) 0 0
\(427\) −799.990 −0.00438762
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 162758.i − 0.876169i −0.898934 0.438084i \(-0.855657\pi\)
0.898934 0.438084i \(-0.144343\pi\)
\(432\) 0 0
\(433\) 266637. 1.42215 0.711073 0.703118i \(-0.248209\pi\)
0.711073 + 0.703118i \(0.248209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21649.8i 0.113368i
\(438\) 0 0
\(439\) 36817.5 0.191040 0.0955201 0.995428i \(-0.469549\pi\)
0.0955201 + 0.995428i \(0.469549\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 137544.i 0.700865i 0.936588 + 0.350432i \(0.113965\pi\)
−0.936588 + 0.350432i \(0.886035\pi\)
\(444\) 0 0
\(445\) −6786.12 −0.0342690
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 174405.i 0.865101i 0.901610 + 0.432550i \(0.142386\pi\)
−0.901610 + 0.432550i \(0.857614\pi\)
\(450\) 0 0
\(451\) −157418. −0.773929
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 46834.0i 0.226224i
\(456\) 0 0
\(457\) 115309. 0.552119 0.276059 0.961141i \(-0.410971\pi\)
0.276059 + 0.961141i \(0.410971\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 405463.i 1.90787i 0.300011 + 0.953936i \(0.403010\pi\)
−0.300011 + 0.953936i \(0.596990\pi\)
\(462\) 0 0
\(463\) −72586.7 −0.338606 −0.169303 0.985564i \(-0.554152\pi\)
−0.169303 + 0.985564i \(0.554152\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 358806.i − 1.64523i −0.568602 0.822613i \(-0.692515\pi\)
0.568602 0.822613i \(-0.307485\pi\)
\(468\) 0 0
\(469\) −276081. −1.25514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 325899.i − 1.45667i
\(474\) 0 0
\(475\) 26316.2 0.116637
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25599.5i 0.111573i 0.998443 + 0.0557867i \(0.0177667\pi\)
−0.998443 + 0.0557867i \(0.982233\pi\)
\(480\) 0 0
\(481\) 128263. 0.554385
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 178199.i − 0.757569i
\(486\) 0 0
\(487\) −247261. −1.04255 −0.521277 0.853388i \(-0.674544\pi\)
−0.521277 + 0.853388i \(0.674544\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 342256.i − 1.41967i −0.704366 0.709837i \(-0.748769\pi\)
0.704366 0.709837i \(-0.251231\pi\)
\(492\) 0 0
\(493\) −4168.37 −0.0171503
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 102505.i 0.414986i
\(498\) 0 0
\(499\) 197838. 0.794527 0.397264 0.917704i \(-0.369960\pi\)
0.397264 + 0.917704i \(0.369960\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 187051.i 0.739305i 0.929170 + 0.369652i \(0.120523\pi\)
−0.929170 + 0.369652i \(0.879477\pi\)
\(504\) 0 0
\(505\) 130329. 0.511044
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28880.8i 0.111474i 0.998445 + 0.0557370i \(0.0177508\pi\)
−0.998445 + 0.0557370i \(0.982249\pi\)
\(510\) 0 0
\(511\) 50585.4 0.193724
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 41981.9i − 0.158288i
\(516\) 0 0
\(517\) 99981.2 0.374057
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 269661.i − 0.993443i −0.867910 0.496721i \(-0.834537\pi\)
0.867910 0.496721i \(-0.165463\pi\)
\(522\) 0 0
\(523\) 187282. 0.684689 0.342344 0.939575i \(-0.388779\pi\)
0.342344 + 0.939575i \(0.388779\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 11812.8i − 0.0425336i
\(528\) 0 0
\(529\) 119878. 0.428378
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 93981.7i 0.330818i
\(534\) 0 0
\(535\) −134711. −0.470649
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 54611.9i − 0.187979i
\(540\) 0 0
\(541\) −25587.9 −0.0874259 −0.0437129 0.999044i \(-0.513919\pi\)
−0.0437129 + 0.999044i \(0.513919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 56327.8i 0.189640i
\(546\) 0 0
\(547\) 276849. 0.925269 0.462634 0.886549i \(-0.346904\pi\)
0.462634 + 0.886549i \(0.346904\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 29265.9i − 0.0963959i
\(552\) 0 0
\(553\) 12677.9 0.0414569
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 461786.i 1.48844i 0.667936 + 0.744219i \(0.267178\pi\)
−0.667936 + 0.744219i \(0.732822\pi\)
\(558\) 0 0
\(559\) −194568. −0.622656
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 177944.i − 0.561393i −0.959797 0.280697i \(-0.909435\pi\)
0.959797 0.280697i \(-0.0905654\pi\)
\(564\) 0 0
\(565\) −52922.0 −0.165783
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 5902.63i − 0.0182314i −0.999958 0.00911572i \(-0.997098\pi\)
0.999958 0.00911572i \(-0.00290166\pi\)
\(570\) 0 0
\(571\) −476692. −1.46206 −0.731031 0.682344i \(-0.760961\pi\)
−0.731031 + 0.682344i \(0.760961\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 194442.i 0.588105i
\(576\) 0 0
\(577\) 209901. 0.630468 0.315234 0.949014i \(-0.397917\pi\)
0.315234 + 0.949014i \(0.397917\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 701385.i 2.07780i
\(582\) 0 0
\(583\) −528605. −1.55523
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 180770.i 0.524627i 0.964983 + 0.262313i \(0.0844854\pi\)
−0.964983 + 0.262313i \(0.915515\pi\)
\(588\) 0 0
\(589\) 82937.2 0.239066
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 468097.i 1.33115i 0.746332 + 0.665574i \(0.231813\pi\)
−0.746332 + 0.665574i \(0.768187\pi\)
\(594\) 0 0
\(595\) −4839.60 −0.0136702
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 644967.i 1.79756i 0.438399 + 0.898780i \(0.355546\pi\)
−0.438399 + 0.898780i \(0.644454\pi\)
\(600\) 0 0
\(601\) 255033. 0.706070 0.353035 0.935610i \(-0.385150\pi\)
0.353035 + 0.935610i \(0.385150\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11509.8i 0.0314453i
\(606\) 0 0
\(607\) 352702. 0.957261 0.478631 0.878016i \(-0.341133\pi\)
0.478631 + 0.878016i \(0.341133\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 59690.9i − 0.159892i
\(612\) 0 0
\(613\) −37013.8 −0.0985015 −0.0492508 0.998786i \(-0.515683\pi\)
−0.0492508 + 0.998786i \(0.515683\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 570187.i 1.49778i 0.662696 + 0.748888i \(0.269412\pi\)
−0.662696 + 0.748888i \(0.730588\pi\)
\(618\) 0 0
\(619\) 440814. 1.15047 0.575233 0.817990i \(-0.304911\pi\)
0.575233 + 0.817990i \(0.304911\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 30681.2i − 0.0790489i
\(624\) 0 0
\(625\) 149578. 0.382920
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13254.1i 0.0335003i
\(630\) 0 0
\(631\) 80926.3 0.203250 0.101625 0.994823i \(-0.467596\pi\)
0.101625 + 0.994823i \(0.467596\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 159321.i 0.395118i
\(636\) 0 0
\(637\) −32604.4 −0.0803522
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 152324.i − 0.370726i −0.982670 0.185363i \(-0.940654\pi\)
0.982670 0.185363i \(-0.0593461\pi\)
\(642\) 0 0
\(643\) −116874. −0.282681 −0.141340 0.989961i \(-0.545141\pi\)
−0.141340 + 0.989961i \(0.545141\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 481407.i 1.15002i 0.818148 + 0.575008i \(0.195001\pi\)
−0.818148 + 0.575008i \(0.804999\pi\)
\(648\) 0 0
\(649\) −416553. −0.988965
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 460831.i − 1.08073i −0.841432 0.540363i \(-0.818287\pi\)
0.841432 0.540363i \(-0.181713\pi\)
\(654\) 0 0
\(655\) 40026.5 0.0932964
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 165076.i − 0.380114i −0.981773 0.190057i \(-0.939133\pi\)
0.981773 0.190057i \(-0.0608674\pi\)
\(660\) 0 0
\(661\) −281756. −0.644868 −0.322434 0.946592i \(-0.604501\pi\)
−0.322434 + 0.946592i \(0.604501\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 33978.6i − 0.0768355i
\(666\) 0 0
\(667\) 216236. 0.486046
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1876.67i 0.00416816i
\(672\) 0 0
\(673\) −756775. −1.67085 −0.835423 0.549608i \(-0.814777\pi\)
−0.835423 + 0.549608i \(0.814777\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 68188.8i − 0.148777i −0.997229 0.0743885i \(-0.976300\pi\)
0.997229 0.0743885i \(-0.0237005\pi\)
\(678\) 0 0
\(679\) 805667. 1.74749
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31351.1i 0.0672066i 0.999435 + 0.0336033i \(0.0106983\pi\)
−0.999435 + 0.0336033i \(0.989302\pi\)
\(684\) 0 0
\(685\) 45048.7 0.0960065
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 315588.i 0.664786i
\(690\) 0 0
\(691\) −374884. −0.785129 −0.392565 0.919724i \(-0.628412\pi\)
−0.392565 + 0.919724i \(0.628412\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40965.1i 0.0848095i
\(696\) 0 0
\(697\) −9711.63 −0.0199906
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 97448.5i − 0.198308i −0.995072 0.0991538i \(-0.968386\pi\)
0.995072 0.0991538i \(-0.0316136\pi\)
\(702\) 0 0
\(703\) −93056.2 −0.188293
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 589238.i 1.17883i
\(708\) 0 0
\(709\) −292525. −0.581931 −0.290965 0.956734i \(-0.593976\pi\)
−0.290965 + 0.956734i \(0.593976\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 612796.i 1.20542i
\(714\) 0 0
\(715\) 109867. 0.214908
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 655579.i 1.26814i 0.773276 + 0.634070i \(0.218617\pi\)
−0.773276 + 0.634070i \(0.781383\pi\)
\(720\) 0 0
\(721\) 189807. 0.365125
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 262844.i − 0.500061i
\(726\) 0 0
\(727\) −259261. −0.490533 −0.245266 0.969456i \(-0.578875\pi\)
−0.245266 + 0.969456i \(0.578875\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 20105.8i − 0.0376258i
\(732\) 0 0
\(733\) 82508.9 0.153565 0.0767826 0.997048i \(-0.475535\pi\)
0.0767826 + 0.997048i \(0.475535\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 647650.i 1.19235i
\(738\) 0 0
\(739\) 730583. 1.33777 0.668884 0.743367i \(-0.266772\pi\)
0.668884 + 0.743367i \(0.266772\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 451784.i 0.818377i 0.912450 + 0.409189i \(0.134188\pi\)
−0.912450 + 0.409189i \(0.865812\pi\)
\(744\) 0 0
\(745\) −104998. −0.189176
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 609052.i − 1.08565i
\(750\) 0 0
\(751\) −580162. −1.02865 −0.514327 0.857594i \(-0.671958\pi\)
−0.514327 + 0.857594i \(0.671958\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 116832.i − 0.204960i
\(756\) 0 0
\(757\) 1.00242e6 1.74928 0.874641 0.484771i \(-0.161097\pi\)
0.874641 + 0.484771i \(0.161097\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 84717.1i 0.146286i 0.997321 + 0.0731429i \(0.0233029\pi\)
−0.997321 + 0.0731429i \(0.976697\pi\)
\(762\) 0 0
\(763\) −254667. −0.437445
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 248691.i 0.422736i
\(768\) 0 0
\(769\) −683525. −1.15585 −0.577926 0.816089i \(-0.696138\pi\)
−0.577926 + 0.816089i \(0.696138\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 235888.i 0.394772i 0.980326 + 0.197386i \(0.0632453\pi\)
−0.980326 + 0.197386i \(0.936755\pi\)
\(774\) 0 0
\(775\) 744879. 1.24017
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 68184.8i − 0.112360i
\(780\) 0 0
\(781\) 240464. 0.394229
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 66537.8i − 0.107977i
\(786\) 0 0
\(787\) 457456. 0.738585 0.369292 0.929313i \(-0.379600\pi\)
0.369292 + 0.929313i \(0.379600\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 239269.i − 0.382414i
\(792\) 0 0
\(793\) 1120.41 0.00178169
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 170922.i 0.269080i 0.990908 + 0.134540i \(0.0429556\pi\)
−0.990908 + 0.134540i \(0.957044\pi\)
\(798\) 0 0
\(799\) 6168.17 0.00966191
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 118667.i − 0.184034i
\(804\) 0 0
\(805\) 251057. 0.387418
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 252280.i − 0.385465i −0.981251 0.192733i \(-0.938265\pi\)
0.981251 0.192733i \(-0.0617350\pi\)
\(810\) 0 0
\(811\) −166784. −0.253579 −0.126789 0.991930i \(-0.540467\pi\)
−0.126789 + 0.991930i \(0.540467\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 25375.3i − 0.0382029i
\(816\) 0 0
\(817\) 141161. 0.211481
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 272312.i − 0.403999i −0.979386 0.201999i \(-0.935256\pi\)
0.979386 0.201999i \(-0.0647439\pi\)
\(822\) 0 0
\(823\) −964628. −1.42416 −0.712082 0.702096i \(-0.752248\pi\)
−0.712082 + 0.702096i \(0.752248\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 430905.i 0.630043i 0.949085 + 0.315021i \(0.102012\pi\)
−0.949085 + 0.315021i \(0.897988\pi\)
\(828\) 0 0
\(829\) 462870. 0.673520 0.336760 0.941591i \(-0.390669\pi\)
0.336760 + 0.941591i \(0.390669\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 3369.19i − 0.00485551i
\(834\) 0 0
\(835\) −436209. −0.625635
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 804698.i 1.14317i 0.820545 + 0.571583i \(0.193670\pi\)
−0.820545 + 0.571583i \(0.806330\pi\)
\(840\) 0 0
\(841\) 414975. 0.586719
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 270942.i 0.379457i
\(846\) 0 0
\(847\) −52037.6 −0.0725354
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 687563.i − 0.949409i
\(852\) 0 0
\(853\) 211580. 0.290788 0.145394 0.989374i \(-0.453555\pi\)
0.145394 + 0.989374i \(0.453555\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 283303.i − 0.385736i −0.981225 0.192868i \(-0.938221\pi\)
0.981225 0.192868i \(-0.0617788\pi\)
\(858\) 0 0
\(859\) 30997.2 0.0420083 0.0210042 0.999779i \(-0.493314\pi\)
0.0210042 + 0.999779i \(0.493314\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.35611e6i 1.82085i 0.413677 + 0.910424i \(0.364244\pi\)
−0.413677 + 0.910424i \(0.635756\pi\)
\(864\) 0 0
\(865\) −572482. −0.765120
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 29740.7i − 0.0393833i
\(870\) 0 0
\(871\) 386661. 0.509675
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 697491.i − 0.911009i
\(876\) 0 0
\(877\) −452930. −0.588887 −0.294443 0.955669i \(-0.595134\pi\)
−0.294443 + 0.955669i \(0.595134\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1.13788e6i − 1.46603i −0.680211 0.733016i \(-0.738112\pi\)
0.680211 0.733016i \(-0.261888\pi\)
\(882\) 0 0
\(883\) −970367. −1.24456 −0.622279 0.782796i \(-0.713793\pi\)
−0.622279 + 0.782796i \(0.713793\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.29729e6i 1.64889i 0.565944 + 0.824444i \(0.308512\pi\)
−0.565944 + 0.824444i \(0.691488\pi\)
\(888\) 0 0
\(889\) −720318. −0.911425
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 43306.4i 0.0543061i
\(894\) 0 0
\(895\) −562261. −0.701926
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 828370.i − 1.02496i
\(900\) 0 0
\(901\) −32611.4 −0.0401716
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 539275.i 0.658436i
\(906\) 0 0
\(907\) −153968. −0.187161 −0.0935807 0.995612i \(-0.529831\pi\)
−0.0935807 + 0.995612i \(0.529831\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.07095e6i 1.29042i 0.764006 + 0.645209i \(0.223230\pi\)
−0.764006 + 0.645209i \(0.776770\pi\)
\(912\) 0 0
\(913\) 1.64536e6 1.97387
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 180966.i 0.215208i
\(918\) 0 0
\(919\) −747688. −0.885298 −0.442649 0.896695i \(-0.645961\pi\)
−0.442649 + 0.896695i \(0.645961\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 143562.i − 0.168514i
\(924\) 0 0
\(925\) −835761. −0.976784
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.48404e6i 1.71955i 0.510675 + 0.859774i \(0.329396\pi\)
−0.510675 + 0.859774i \(0.670604\pi\)
\(930\) 0 0
\(931\) 23654.9 0.0272911
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11353.1i 0.0129865i
\(936\) 0 0
\(937\) −650560. −0.740983 −0.370491 0.928836i \(-0.620811\pi\)
−0.370491 + 0.928836i \(0.620811\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 406958.i 0.459590i 0.973239 + 0.229795i \(0.0738056\pi\)
−0.973239 + 0.229795i \(0.926194\pi\)
\(942\) 0 0
\(943\) 503795. 0.566540
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 830009.i − 0.925514i −0.886485 0.462757i \(-0.846860\pi\)
0.886485 0.462757i \(-0.153140\pi\)
\(948\) 0 0
\(949\) −70846.6 −0.0786659
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 927863.i 1.02164i 0.859688 + 0.510820i \(0.170658\pi\)
−0.859688 + 0.510820i \(0.829342\pi\)
\(954\) 0 0
\(955\) −550496. −0.603597
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 203672.i 0.221460i
\(960\) 0 0
\(961\) 1.42401e6 1.54194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 320589.i 0.344266i
\(966\) 0 0
\(967\) 1.11248e6 1.18970 0.594851 0.803836i \(-0.297211\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 68160.6i 0.0722927i 0.999347 + 0.0361464i \(0.0115083\pi\)
−0.999347 + 0.0361464i \(0.988492\pi\)
\(972\) 0 0
\(973\) −185210. −0.195631
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 791113.i 0.828799i 0.910095 + 0.414399i \(0.136008\pi\)
−0.910095 + 0.414399i \(0.863992\pi\)
\(978\) 0 0
\(979\) −71974.0 −0.0750949
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.09523e6i 1.13344i 0.823912 + 0.566718i \(0.191787\pi\)
−0.823912 + 0.566718i \(0.808213\pi\)
\(984\) 0 0
\(985\) −761950. −0.785334
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.04300e6i 1.06633i
\(990\) 0 0
\(991\) −278492. −0.283573 −0.141787 0.989897i \(-0.545285\pi\)
−0.141787 + 0.989897i \(0.545285\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 304488.i − 0.307556i
\(996\) 0 0
\(997\) 1.33145e6 1.33947 0.669736 0.742599i \(-0.266407\pi\)
0.669736 + 0.742599i \(0.266407\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.5.e.c.161.3 6
3.2 odd 2 inner 1296.5.e.c.161.4 6
4.3 odd 2 81.5.b.a.80.1 6
9.2 odd 6 432.5.q.a.17.2 6
9.4 even 3 432.5.q.a.305.2 6
9.5 odd 6 144.5.q.a.65.2 6
9.7 even 3 144.5.q.a.113.2 6
12.11 even 2 81.5.b.a.80.6 6
36.7 odd 6 9.5.d.a.5.1 yes 6
36.11 even 6 27.5.d.a.17.3 6
36.23 even 6 9.5.d.a.2.1 6
36.31 odd 6 27.5.d.a.8.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.5.d.a.2.1 6 36.23 even 6
9.5.d.a.5.1 yes 6 36.7 odd 6
27.5.d.a.8.3 6 36.31 odd 6
27.5.d.a.17.3 6 36.11 even 6
81.5.b.a.80.1 6 4.3 odd 2
81.5.b.a.80.6 6 12.11 even 2
144.5.q.a.65.2 6 9.5 odd 6
144.5.q.a.113.2 6 9.7 even 3
432.5.q.a.17.2 6 9.2 odd 6
432.5.q.a.305.2 6 9.4 even 3
1296.5.e.c.161.3 6 1.1 even 1 trivial
1296.5.e.c.161.4 6 3.2 odd 2 inner