Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1296,5,Mod(161,1296)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1296.161");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(133.967472157\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.39400128.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{3}\cdot 3^{9} \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 161.3 | ||
Root | \(1.89154 - 3.27625i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1296.161 |
Dual form | 1296.5.e.c.161.4 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(1135\) | \(1217\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 11.7830i | − 0.471320i | −0.971836 | − | 0.235660i | \(-0.924275\pi\) | ||||
0.971836 | − | 0.235660i | \(-0.0757252\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 53.2728 | 1.08720 | 0.543600 | − | 0.839344i | \(-0.317061\pi\) | ||||
0.543600 | + | 0.839344i | \(0.317061\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 124.971i | − 1.03282i | −0.856341 | − | 0.516410i | \(-0.827268\pi\) | ||||
0.856341 | − | 0.516410i | \(-0.172732\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −74.6104 | −0.441482 | −0.220741 | − | 0.975332i | \(-0.570848\pi\) | ||||
−0.220741 | + | 0.975332i | \(0.570848\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 7.70989i | − 0.0266778i | −0.999911 | − | 0.0133389i | \(-0.995754\pi\) | ||||
0.999911 | − | 0.0133389i | \(-0.00424603\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 54.1307 | 0.149946 | 0.0749732 | − | 0.997186i | \(-0.476113\pi\) | ||||
0.0749732 | + | 0.997186i | \(0.476113\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 399.954i | 0.756057i | 0.925794 | + | 0.378029i | \(0.123398\pi\) | ||||
−0.925794 | + | 0.378029i | \(0.876602\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 486.161 | 0.777858 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − 540.653i | − 0.642869i | −0.946932 | − | 0.321435i | \(-0.895835\pi\) | ||||
0.946932 | − | 0.321435i | \(-0.104165\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 1532.17 | 1.59435 | 0.797173 | − | 0.603751i | \(-0.206328\pi\) | ||||
0.797173 | + | 0.603751i | \(0.206328\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 627.714i | − 0.512419i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −1719.10 | −1.25574 | −0.627868 | − | 0.778320i | \(-0.716072\pi\) | ||||
−0.627868 | + | 0.778320i | \(0.716072\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | − 1259.63i | − 0.749335i | −0.927159 | − | 0.374668i | \(-0.877757\pi\) | ||||
0.927159 | − | 0.374668i | \(-0.122243\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 2607.79 | 1.41038 | 0.705189 | − | 0.709020i | \(-0.250862\pi\) | ||||
0.705189 | + | 0.709020i | \(0.250862\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 800.034i | 0.362170i | 0.983467 | + | 0.181085i | \(0.0579609\pi\) | ||||
−0.983467 | + | 0.181085i | \(0.942039\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 436.996 | 0.182006 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 4229.81i | − 1.50581i | −0.658131 | − | 0.752904i | \(-0.728653\pi\) | ||||
0.658131 | − | 0.752904i | \(-0.271347\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −1472.54 | −0.486789 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 3333.19i | − 0.957538i | −0.877941 | − | 0.478769i | \(-0.841083\pi\) | ||||
0.877941 | − | 0.478769i | \(-0.158917\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −15.0169 | −0.00403570 | −0.00201785 | − | 0.999998i | \(-0.500642\pi\) | ||||
−0.00201785 | + | 0.999998i | \(0.500642\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 879.134i | 0.208079i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −5182.39 | −1.15447 | −0.577233 | − | 0.816580i | \(-0.695867\pi\) | ||||
−0.577233 | + | 0.816580i | \(0.695867\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 1924.16i | 0.381701i | 0.981619 | + | 0.190851i | \(0.0611246\pi\) | ||||
−0.981619 | + | 0.190851i | \(0.938875\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 949.554 | 0.178186 | 0.0890931 | − | 0.996023i | \(-0.471603\pi\) | ||||
0.0890931 | + | 0.996023i | \(0.471603\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 6657.57i | − 1.12288i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 237.980 | 0.0381318 | 0.0190659 | − | 0.999818i | \(-0.493931\pi\) | ||||
0.0190659 | + | 0.999818i | \(0.493931\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 13165.9i | 1.91115i | 0.294750 | + | 0.955574i | \(0.404764\pi\) | ||||
−0.294750 | + | 0.955574i | \(0.595236\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −90.8456 | −0.0125738 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 575.925i | − 0.0727086i | −0.999339 | − | 0.0363543i | \(-0.988426\pi\) | ||||
0.999339 | − | 0.0363543i | \(-0.0115745\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −3974.71 | −0.479979 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | − 637.822i | − 0.0706728i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 15123.4 | 1.60733 | 0.803667 | − | 0.595079i | \(-0.202879\pi\) | ||||
0.803667 | + | 0.595079i | \(0.202879\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 11060.8i | 1.08428i | 0.840287 | + | 0.542141i | \(0.182386\pi\) | ||||
−0.840287 | + | 0.542141i | \(0.817614\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 3562.92 | 0.335839 | 0.167920 | − | 0.985801i | \(-0.446295\pi\) | ||||
0.167920 | + | 0.985801i | \(0.446295\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 11432.7i | − 0.998576i | −0.866436 | − | 0.499288i | \(-0.833595\pi\) | ||||
0.866436 | − | 0.499288i | \(-0.166405\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −4780.43 | −0.402359 | −0.201180 | − | 0.979554i | \(-0.564478\pi\) | ||||
−0.201180 | + | 0.979554i | \(0.564478\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 4491.39i | − 0.351742i | −0.984413 | − | 0.175871i | \(-0.943726\pi\) | ||||
0.984413 | − | 0.175871i | \(-0.0562741\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 4712.66 | 0.356345 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − 410.728i | − 0.0290041i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −976.812 | −0.0667176 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 13092.8i | − 0.837940i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −13521.3 | −0.838322 | −0.419161 | − | 0.907912i | \(-0.637676\pi\) | ||||
−0.419161 | + | 0.907912i | \(0.637676\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 3396.97i | 0.197947i | 0.995090 | + | 0.0989735i | \(0.0315559\pi\) | ||||
−0.995090 | + | 0.0989735i | \(0.968444\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2883.69 | 0.163022 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 3823.19i | 0.203697i | 0.994800 | + | 0.101849i | \(0.0324757\pi\) | ||||
−0.994800 | + | 0.101849i | \(0.967524\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −3476.63 | −0.179940 | −0.0899702 | − | 0.995944i | \(-0.528677\pi\) | ||||
−0.0899702 | + | 0.995944i | \(0.528677\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 9324.16i | 0.455971i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −6370.51 | −0.302997 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 8910.94i | − 0.401376i | −0.979655 | − | 0.200688i | \(-0.935682\pi\) | ||||
0.979655 | − | 0.200688i | \(-0.0643177\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 9915.33 | 0.434864 | 0.217432 | − | 0.976076i | \(-0.430232\pi\) | ||||
0.217432 | + | 0.976076i | \(0.430232\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | − 18053.5i | − 0.751447i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 5646.94 | 0.229094 | 0.114547 | − | 0.993418i | \(-0.463458\pi\) | ||||
0.114547 | + | 0.993418i | \(0.463458\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 21306.7i | 0.821986i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 2153.55 | 0.0810552 | 0.0405276 | − | 0.999178i | \(-0.487096\pi\) | ||||
0.0405276 | + | 0.999178i | \(0.487096\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 37020.2i | − 1.32741i | −0.747994 | − | 0.663706i | \(-0.768983\pi\) | ||||
0.747994 | − | 0.663706i | \(-0.231017\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −22994.3 | −0.805094 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 48585.4i | − 1.62336i | −0.584105 | − | 0.811678i | \(-0.698554\pi\) | ||||
0.584105 | − | 0.811678i | \(-0.301446\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 25899.2 | 0.845687 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 47717.9i | − 1.48928i | −0.667468 | − | 0.744639i | \(-0.732622\pi\) | ||||
0.667468 | − | 0.744639i | \(-0.267378\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −45767.2 | −1.39700 | −0.698502 | − | 0.715608i | \(-0.746150\pi\) | ||||
−0.698502 | + | 0.715608i | \(0.746150\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 20256.2i | 0.591854i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −963.514 | −0.0275534 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | − 46719.5i | − 1.28065i | −0.768103 | − | 0.640326i | \(-0.778799\pi\) | ||||
0.768103 | − | 0.640326i | \(-0.221201\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −27207.8 | −0.730430 | −0.365215 | − | 0.930923i | \(-0.619005\pi\) | ||||
−0.365215 | + | 0.930923i | \(0.619005\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 64665.2i | − 1.66624i | −0.553090 | − | 0.833122i | \(-0.686551\pi\) | ||||
0.553090 | − | 0.833122i | \(-0.313449\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 25841.3 | 0.652542 | 0.326271 | − | 0.945276i | \(-0.394208\pi\) | ||||
0.326271 | + | 0.945276i | \(0.394208\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 28802.1i | − 0.698928i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −14842.3 | −0.353177 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − 6764.78i | − 0.154868i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −46058.7 | −1.03454 | −0.517269 | − | 0.855823i | \(-0.673051\pi\) | ||||
−0.517269 | + | 0.855823i | \(0.673051\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − 30727.6i | − 0.664739i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 81622.8 | 1.73337 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 575.238i | 0.0117778i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −21911.1 | −0.440610 | −0.220305 | − | 0.975431i | \(-0.570705\pi\) | ||||
−0.220305 | + | 0.975431i | \(0.570705\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 49785.7i | − 0.966168i | −0.875574 | − | 0.483084i | \(-0.839517\pi\) | ||||
0.875574 | − | 0.483084i | \(-0.160483\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 28521.0 | 0.543868 | 0.271934 | − | 0.962316i | \(-0.412337\pi\) | ||||
0.271934 | + | 0.962316i | \(0.412337\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 44050.2i | 0.811403i | 0.914006 | + | 0.405701i | \(0.132973\pi\) | ||||
−0.914006 | + | 0.405701i | \(0.867027\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 9426.80 | 0.170698 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 20575.2i | 0.360203i | 0.983648 | + | 0.180102i | \(0.0576427\pi\) | ||||
−0.983648 | + | 0.180102i | \(0.942357\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −57917.5 | −0.997185 | −0.498593 | − | 0.866836i | \(-0.666150\pi\) | ||||
−0.498593 | + | 0.866836i | \(0.666150\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | − 5149.12i | − 0.0857829i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4038.71 | −0.0661986 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 54140.4i | 0.859357i | 0.902982 | + | 0.429679i | \(0.141373\pi\) | ||||
−0.902982 | + | 0.429679i | \(0.858627\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 49982.8 | 0.780871 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 113764.i | − 1.72242i | −0.508248 | − | 0.861211i | \(-0.669707\pi\) | ||||
0.508248 | − | 0.861211i | \(-0.330293\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −91581.5 | −1.36524 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 44363.7i | − 0.641381i | −0.947184 | − | 0.320691i | \(-0.896085\pi\) | ||||
0.947184 | − | 0.320691i | \(-0.103915\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −49839.9 | −0.709717 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 4429.77i | − 0.0612176i | −0.999531 | − | 0.0306088i | \(-0.990255\pi\) | ||||
0.999531 | − | 0.0306088i | \(-0.00974461\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 86111.9 | 1.17253 | 0.586266 | − | 0.810119i | \(-0.300597\pi\) | ||||
0.586266 | + | 0.810119i | \(0.300597\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | − 60756.1i | − 0.803387i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 70613.4 | 0.920297 | 0.460148 | − | 0.887842i | \(-0.347796\pi\) | ||||
0.460148 | + | 0.887842i | \(0.347796\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 149254.i | − 1.89023i | −0.326740 | − | 0.945114i | \(-0.605950\pi\) | ||||
0.326740 | − | 0.945114i | \(-0.394050\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 83926.7 | 1.04792 | 0.523959 | − | 0.851743i | \(-0.324454\pi\) | ||||
0.523959 | + | 0.851743i | \(0.324454\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 67104.2i | − 0.814678i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 83461.6 | 0.999288 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 35903.0i | 0.418211i | 0.977893 | + | 0.209106i | \(0.0670553\pi\) | ||||
−0.977893 | + | 0.209106i | \(0.932945\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −39275.0 | −0.451307 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 29840.7i | − 0.333785i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 138924. | 1.53336 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 176.944i | 0.00190211i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −7054.30 | −0.0748475 | −0.0374238 | − | 0.999299i | \(-0.511915\pi\) | ||||
−0.0374238 | + | 0.999299i | \(0.511915\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 85661.4i | 0.885655i | 0.896607 | + | 0.442827i | \(0.146025\pi\) | ||||
−0.896607 | + | 0.442827i | \(0.853975\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 73442.5 | 0.749650 | 0.374825 | − | 0.927096i | \(-0.377703\pi\) | ||||
0.374825 | + | 0.927096i | \(0.377703\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 49239.6i | 0.490000i | 0.969523 | + | 0.245000i | \(0.0787880\pi\) | ||||
−0.969523 | + | 0.245000i | \(0.921212\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −67566.1 | −0.663968 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 417.341i | − 0.00400024i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −36272.7 | −0.343410 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 42620.1i | 0.393752i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 82011.1 | 0.748543 | 0.374271 | − | 0.927319i | \(-0.377893\pi\) | ||||
0.374271 | + | 0.927319i | \(0.377893\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 61064.1i | 0.544122i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −46982.9 | −0.413694 | −0.206847 | − | 0.978373i | \(-0.566320\pi\) | ||||
−0.206847 | + | 0.978373i | \(0.566320\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | − 191477.i | − 1.64667i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −104628. | −0.889324 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 44319.7i | 0.368076i | 0.982919 | + | 0.184038i | \(0.0589170\pi\) | ||||
−0.982919 | + | 0.184038i | \(0.941083\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −186463. | −1.53088 | −0.765442 | − | 0.643504i | \(-0.777480\pi\) | ||||
−0.765442 | + | 0.643504i | \(0.777480\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 169694.i | − 1.36181i | −0.732370 | − | 0.680907i | \(-0.761586\pi\) | ||||
0.732370 | − | 0.680907i | \(-0.238414\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 22672.3 | 0.179903 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 69656.7i | 0.540473i | 0.962794 | + | 0.270236i | \(0.0871019\pi\) | ||||
−0.962794 | + | 0.270236i | \(0.912898\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −127391. | −0.977516 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | − 11188.6i | − 0.0839827i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 176168. | 1.30796 | 0.653982 | − | 0.756510i | \(-0.273097\pi\) | ||||
0.653982 | + | 0.756510i | \(0.273097\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 225334.i | − 1.63712i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 67187.1 | 0.482912 | 0.241456 | − | 0.970412i | \(-0.422375\pi\) | ||||
0.241456 | + | 0.970412i | \(0.422375\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 40338.3i | 0.283815i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −43976.9 | −0.306158 | −0.153079 | − | 0.988214i | \(-0.548919\pi\) | ||||
−0.153079 | + | 0.988214i | \(0.548919\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 185140.i | − 1.26212i | −0.775733 | − | 0.631062i | \(-0.782619\pi\) | ||||
0.775733 | − | 0.631062i | \(-0.217381\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −78446.2 | −0.529237 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 30442.6i | − 0.201179i | −0.994928 | − | 0.100589i | \(-0.967927\pi\) | ||||
0.994928 | − | 0.100589i | \(-0.0320728\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 3083.60 | 0.0201699 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 2804.12i | − 0.0179723i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −235724. | −1.49563 | −0.747813 | − | 0.663910i | \(-0.768896\pi\) | ||||
−0.747813 | + | 0.663910i | \(0.768896\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 234208.i | − 1.45651i | −0.685308 | − | 0.728254i | \(-0.740332\pi\) | ||||
0.685308 | − | 0.728254i | \(-0.259668\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −114316. | −0.703874 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 214839.i | 1.29695i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −297786. | −1.78015 | −0.890076 | − | 0.455812i | \(-0.849349\pi\) | ||||
−0.890076 | + | 0.455812i | \(0.849349\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 177569.i | − 1.04104i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 155134. | 0.900763 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 36874.2i | − 0.210036i | −0.994470 | − | 0.105018i | \(-0.966510\pi\) | ||||
0.994470 | − | 0.105018i | \(-0.0334901\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 240610. | 1.35753 | 0.678764 | − | 0.734356i | \(-0.262516\pi\) | ||||
0.678764 | + | 0.734356i | \(0.262516\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − 3748.25i | − 0.0207515i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −799.990 | −0.00438762 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 162758.i | − 0.876169i | −0.898934 | − | 0.438084i | \(-0.855657\pi\) | ||||
0.898934 | − | 0.438084i | \(-0.144343\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 266637. | 1.42215 | 0.711073 | − | 0.703118i | \(-0.248209\pi\) | ||||
0.711073 | + | 0.703118i | \(0.248209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 21649.8i | 0.113368i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 36817.5 | 0.191040 | 0.0955201 | − | 0.995428i | \(-0.469549\pi\) | ||||
0.0955201 | + | 0.995428i | \(0.469549\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 137544.i | 0.700865i | 0.936588 | + | 0.350432i | \(0.113965\pi\) | ||||
−0.936588 | + | 0.350432i | \(0.886035\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −6786.12 | −0.0342690 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 174405.i | 0.865101i | 0.901610 | + | 0.432550i | \(0.142386\pi\) | ||||
−0.901610 | + | 0.432550i | \(0.857614\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −157418. | −0.773929 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 46834.0i | 0.226224i | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 115309. | 0.552119 | 0.276059 | − | 0.961141i | \(-0.410971\pi\) | ||||
0.276059 | + | 0.961141i | \(0.410971\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 405463.i | 1.90787i | 0.300011 | + | 0.953936i | \(0.403010\pi\) | ||||
−0.300011 | + | 0.953936i | \(0.596990\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −72586.7 | −0.338606 | −0.169303 | − | 0.985564i | \(-0.554152\pi\) | ||||
−0.169303 | + | 0.985564i | \(0.554152\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 358806.i | − 1.64523i | −0.568602 | − | 0.822613i | \(-0.692515\pi\) | ||||
0.568602 | − | 0.822613i | \(-0.307485\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −276081. | −1.25514 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 325899.i | − 1.45667i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 26316.2 | 0.116637 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 25599.5i | 0.111573i | 0.998443 | + | 0.0557867i | \(0.0177667\pi\) | ||||
−0.998443 | + | 0.0557867i | \(0.982233\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 128263. | 0.554385 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | − 178199.i | − 0.757569i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −247261. | −1.04255 | −0.521277 | − | 0.853388i | \(-0.674544\pi\) | ||||
−0.521277 | + | 0.853388i | \(0.674544\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − 342256.i | − 1.41967i | −0.704366 | − | 0.709837i | \(-0.748769\pi\) | ||||
0.704366 | − | 0.709837i | \(-0.251231\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −4168.37 | −0.0171503 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 102505.i | 0.414986i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 197838. | 0.794527 | 0.397264 | − | 0.917704i | \(-0.369960\pi\) | ||||
0.397264 | + | 0.917704i | \(0.369960\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 187051.i | 0.739305i | 0.929170 | + | 0.369652i | \(0.120523\pi\) | ||||
−0.929170 | + | 0.369652i | \(0.879477\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 130329. | 0.511044 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 28880.8i | 0.111474i | 0.998445 | + | 0.0557370i | \(0.0177508\pi\) | ||||
−0.998445 | + | 0.0557370i | \(0.982249\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 50585.4 | 0.193724 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 41981.9i | − 0.158288i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 99981.2 | 0.374057 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | − 269661.i | − 0.993443i | −0.867910 | − | 0.496721i | \(-0.834537\pi\) | ||||
0.867910 | − | 0.496721i | \(-0.165463\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 187282. | 0.684689 | 0.342344 | − | 0.939575i | \(-0.388779\pi\) | ||||
0.342344 | + | 0.939575i | \(0.388779\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 11812.8i | − 0.0425336i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 119878. | 0.428378 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 93981.7i | 0.330818i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −134711. | −0.470649 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 54611.9i | − 0.187979i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −25587.9 | −0.0874259 | −0.0437129 | − | 0.999044i | \(-0.513919\pi\) | ||||
−0.0437129 | + | 0.999044i | \(0.513919\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 56327.8i | 0.189640i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 276849. | 0.925269 | 0.462634 | − | 0.886549i | \(-0.346904\pi\) | ||||
0.462634 | + | 0.886549i | \(0.346904\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 29265.9i | − 0.0963959i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 12677.9 | 0.0414569 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 461786.i | 1.48844i | 0.667936 | + | 0.744219i | \(0.267178\pi\) | ||||
−0.667936 | + | 0.744219i | \(0.732822\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −194568. | −0.622656 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 177944.i | − 0.561393i | −0.959797 | − | 0.280697i | \(-0.909435\pi\) | ||||
0.959797 | − | 0.280697i | \(-0.0905654\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −52922.0 | −0.165783 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | − 5902.63i | − 0.0182314i | −0.999958 | − | 0.00911572i | \(-0.997098\pi\) | ||||
0.999958 | − | 0.00911572i | \(-0.00290166\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −476692. | −1.46206 | −0.731031 | − | 0.682344i | \(-0.760961\pi\) | ||||
−0.731031 | + | 0.682344i | \(0.760961\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 194442.i | 0.588105i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 209901. | 0.630468 | 0.315234 | − | 0.949014i | \(-0.397917\pi\) | ||||
0.315234 | + | 0.949014i | \(0.397917\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 701385.i | 2.07780i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −528605. | −1.55523 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 180770.i | 0.524627i | 0.964983 | + | 0.262313i | \(0.0844854\pi\) | ||||
−0.964983 | + | 0.262313i | \(0.915515\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 82937.2 | 0.239066 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 468097.i | 1.33115i | 0.746332 | + | 0.665574i | \(0.231813\pi\) | ||||
−0.746332 | + | 0.665574i | \(0.768187\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | −4839.60 | −0.0136702 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 644967.i | 1.79756i | 0.438399 | + | 0.898780i | \(0.355546\pi\) | ||||
−0.438399 | + | 0.898780i | \(0.644454\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 255033. | 0.706070 | 0.353035 | − | 0.935610i | \(-0.385150\pi\) | ||||
0.353035 | + | 0.935610i | \(0.385150\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 11509.8i | 0.0314453i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 352702. | 0.957261 | 0.478631 | − | 0.878016i | \(-0.341133\pi\) | ||||
0.478631 | + | 0.878016i | \(0.341133\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 59690.9i | − 0.159892i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −37013.8 | −0.0985015 | −0.0492508 | − | 0.998786i | \(-0.515683\pi\) | ||||
−0.0492508 | + | 0.998786i | \(0.515683\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 570187.i | 1.49778i | 0.662696 | + | 0.748888i | \(0.269412\pi\) | ||||
−0.662696 | + | 0.748888i | \(0.730588\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 440814. | 1.15047 | 0.575233 | − | 0.817990i | \(-0.304911\pi\) | ||||
0.575233 | + | 0.817990i | \(0.304911\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 30681.2i | − 0.0790489i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 149578. | 0.382920 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 13254.1i | 0.0335003i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 80926.3 | 0.203250 | 0.101625 | − | 0.994823i | \(-0.467596\pi\) | ||||
0.101625 | + | 0.994823i | \(0.467596\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 159321.i | 0.395118i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −32604.4 | −0.0803522 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − 152324.i | − 0.370726i | −0.982670 | − | 0.185363i | \(-0.940654\pi\) | ||||
0.982670 | − | 0.185363i | \(-0.0593461\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −116874. | −0.282681 | −0.141340 | − | 0.989961i | \(-0.545141\pi\) | ||||
−0.141340 | + | 0.989961i | \(0.545141\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 481407.i | 1.15002i | 0.818148 | + | 0.575008i | \(0.195001\pi\) | ||||
−0.818148 | + | 0.575008i | \(0.804999\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −416553. | −0.988965 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 460831.i | − 1.08073i | −0.841432 | − | 0.540363i | \(-0.818287\pi\) | ||||
0.841432 | − | 0.540363i | \(-0.181713\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 40026.5 | 0.0932964 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 165076.i | − 0.380114i | −0.981773 | − | 0.190057i | \(-0.939133\pi\) | ||||
0.981773 | − | 0.190057i | \(-0.0608674\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −281756. | −0.644868 | −0.322434 | − | 0.946592i | \(-0.604501\pi\) | ||||
−0.322434 | + | 0.946592i | \(0.604501\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | − 33978.6i | − 0.0768355i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 216236. | 0.486046 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 1876.67i | 0.00416816i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −756775. | −1.67085 | −0.835423 | − | 0.549608i | \(-0.814777\pi\) | ||||
−0.835423 | + | 0.549608i | \(0.814777\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 68188.8i | − 0.148777i | −0.997229 | − | 0.0743885i | \(-0.976300\pi\) | ||||
0.997229 | − | 0.0743885i | \(-0.0237005\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 805667. | 1.74749 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 31351.1i | 0.0672066i | 0.999435 | + | 0.0336033i | \(0.0106983\pi\) | ||||
−0.999435 | + | 0.0336033i | \(0.989302\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 45048.7 | 0.0960065 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 315588.i | 0.664786i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −374884. | −0.785129 | −0.392565 | − | 0.919724i | \(-0.628412\pi\) | ||||
−0.392565 | + | 0.919724i | \(0.628412\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 40965.1i | 0.0848095i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −9711.63 | −0.0199906 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 97448.5i | − 0.198308i | −0.995072 | − | 0.0991538i | \(-0.968386\pi\) | ||||
0.995072 | − | 0.0991538i | \(-0.0316136\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −93056.2 | −0.188293 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 589238.i | 1.17883i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −292525. | −0.581931 | −0.290965 | − | 0.956734i | \(-0.593976\pi\) | ||||
−0.290965 | + | 0.956734i | \(0.593976\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 612796.i | 1.20542i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 109867. | 0.214908 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 655579.i | 1.26814i | 0.773276 | + | 0.634070i | \(0.218617\pi\) | ||||
−0.773276 | + | 0.634070i | \(0.781383\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 189807. | 0.365125 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 262844.i | − 0.500061i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −259261. | −0.490533 | −0.245266 | − | 0.969456i | \(-0.578875\pi\) | ||||
−0.245266 | + | 0.969456i | \(0.578875\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 20105.8i | − 0.0376258i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 82508.9 | 0.153565 | 0.0767826 | − | 0.997048i | \(-0.475535\pi\) | ||||
0.0767826 | + | 0.997048i | \(0.475535\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 647650.i | 1.19235i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 730583. | 1.33777 | 0.668884 | − | 0.743367i | \(-0.266772\pi\) | ||||
0.668884 | + | 0.743367i | \(0.266772\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 451784.i | 0.818377i | 0.912450 | + | 0.409189i | \(0.134188\pi\) | ||||
−0.912450 | + | 0.409189i | \(0.865812\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −104998. | −0.189176 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 609052.i | − 1.08565i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −580162. | −1.02865 | −0.514327 | − | 0.857594i | \(-0.671958\pi\) | ||||
−0.514327 | + | 0.857594i | \(0.671958\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 116832.i | − 0.204960i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 1.00242e6 | 1.74928 | 0.874641 | − | 0.484771i | \(-0.161097\pi\) | ||||
0.874641 | + | 0.484771i | \(0.161097\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 84717.1i | 0.146286i | 0.997321 | + | 0.0731429i | \(0.0233029\pi\) | ||||
−0.997321 | + | 0.0731429i | \(0.976697\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −254667. | −0.437445 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 248691.i | 0.422736i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −683525. | −1.15585 | −0.577926 | − | 0.816089i | \(-0.696138\pi\) | ||||
−0.577926 | + | 0.816089i | \(0.696138\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 235888.i | 0.394772i | 0.980326 | + | 0.197386i | \(0.0632453\pi\) | ||||
−0.980326 | + | 0.197386i | \(0.936755\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 744879. | 1.24017 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 68184.8i | − 0.112360i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 240464. | 0.394229 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 66537.8i | − 0.107977i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 457456. | 0.738585 | 0.369292 | − | 0.929313i | \(-0.379600\pi\) | ||||
0.369292 | + | 0.929313i | \(0.379600\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 239269.i | − 0.382414i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 1120.41 | 0.00178169 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 170922.i | 0.269080i | 0.990908 | + | 0.134540i | \(0.0429556\pi\) | ||||
−0.990908 | + | 0.134540i | \(0.957044\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 6168.17 | 0.00966191 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 118667.i | − 0.184034i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 251057. | 0.387418 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | − 252280.i | − 0.385465i | −0.981251 | − | 0.192733i | \(-0.938265\pi\) | ||||
0.981251 | − | 0.192733i | \(-0.0617350\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −166784. | −0.253579 | −0.126789 | − | 0.991930i | \(-0.540467\pi\) | ||||
−0.126789 | + | 0.991930i | \(0.540467\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | − 25375.3i | − 0.0382029i | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 141161. | 0.211481 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 272312.i | − 0.403999i | −0.979386 | − | 0.201999i | \(-0.935256\pi\) | ||||
0.979386 | − | 0.201999i | \(-0.0647439\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −964628. | −1.42416 | −0.712082 | − | 0.702096i | \(-0.752248\pi\) | ||||
−0.712082 | + | 0.702096i | \(0.752248\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 430905.i | 0.630043i | 0.949085 | + | 0.315021i | \(0.102012\pi\) | ||||
−0.949085 | + | 0.315021i | \(0.897988\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 462870. | 0.673520 | 0.336760 | − | 0.941591i | \(-0.390669\pi\) | ||||
0.336760 | + | 0.941591i | \(0.390669\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 3369.19i | − 0.00485551i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −436209. | −0.625635 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 804698.i | 1.14317i | 0.820545 | + | 0.571583i | \(0.193670\pi\) | ||||
−0.820545 | + | 0.571583i | \(0.806330\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 414975. | 0.586719 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 270942.i | 0.379457i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −52037.6 | −0.0725354 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 687563.i | − 0.949409i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 211580. | 0.290788 | 0.145394 | − | 0.989374i | \(-0.453555\pi\) | ||||
0.145394 | + | 0.989374i | \(0.453555\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 283303.i | − 0.385736i | −0.981225 | − | 0.192868i | \(-0.938221\pi\) | ||||
0.981225 | − | 0.192868i | \(-0.0617788\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 30997.2 | 0.0420083 | 0.0210042 | − | 0.999779i | \(-0.493314\pi\) | ||||
0.0210042 | + | 0.999779i | \(0.493314\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 1.35611e6i | 1.82085i | 0.413677 | + | 0.910424i | \(0.364244\pi\) | ||||
−0.413677 | + | 0.910424i | \(0.635756\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −572482. | −0.765120 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 29740.7i | − 0.0393833i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 386661. | 0.509675 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | − 697491.i | − 0.911009i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −452930. | −0.588887 | −0.294443 | − | 0.955669i | \(-0.595134\pi\) | ||||
−0.294443 | + | 0.955669i | \(0.595134\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | − 1.13788e6i | − 1.46603i | −0.680211 | − | 0.733016i | \(-0.738112\pi\) | ||||
0.680211 | − | 0.733016i | \(-0.261888\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −970367. | −1.24456 | −0.622279 | − | 0.782796i | \(-0.713793\pi\) | ||||
−0.622279 | + | 0.782796i | \(0.713793\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 1.29729e6i | 1.64889i | 0.565944 | + | 0.824444i | \(0.308512\pi\) | ||||
−0.565944 | + | 0.824444i | \(0.691488\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −720318. | −0.911425 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 43306.4i | 0.0543061i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −562261. | −0.701926 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 828370.i | − 1.02496i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −32611.4 | −0.0401716 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 539275.i | 0.658436i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −153968. | −0.187161 | −0.0935807 | − | 0.995612i | \(-0.529831\pi\) | ||||
−0.0935807 | + | 0.995612i | \(0.529831\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 1.07095e6i | 1.29042i | 0.764006 | + | 0.645209i | \(0.223230\pi\) | ||||
−0.764006 | + | 0.645209i | \(0.776770\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 1.64536e6 | 1.97387 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 180966.i | 0.215208i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −747688. | −0.885298 | −0.442649 | − | 0.896695i | \(-0.645961\pi\) | ||||
−0.442649 | + | 0.896695i | \(0.645961\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 143562.i | − 0.168514i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −835761. | −0.976784 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 1.48404e6i | 1.71955i | 0.510675 | + | 0.859774i | \(0.329396\pi\) | ||||
−0.510675 | + | 0.859774i | \(0.670604\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 23654.9 | 0.0272911 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 11353.1i | 0.0129865i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −650560. | −0.740983 | −0.370491 | − | 0.928836i | \(-0.620811\pi\) | ||||
−0.370491 | + | 0.928836i | \(0.620811\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 406958.i | 0.459590i | 0.973239 | + | 0.229795i | \(0.0738056\pi\) | ||||
−0.973239 | + | 0.229795i | \(0.926194\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 503795. | 0.566540 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 830009.i | − 0.925514i | −0.886485 | − | 0.462757i | \(-0.846860\pi\) | ||||
0.886485 | − | 0.462757i | \(-0.153140\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −70846.6 | −0.0786659 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 927863.i | 1.02164i | 0.859688 | + | 0.510820i | \(0.170658\pi\) | ||||
−0.859688 | + | 0.510820i | \(0.829342\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −550496. | −0.603597 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 203672.i | 0.221460i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 1.42401e6 | 1.54194 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 320589.i | 0.344266i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 1.11248e6 | 1.18970 | 0.594851 | − | 0.803836i | \(-0.297211\pi\) | ||||
0.594851 | + | 0.803836i | \(0.297211\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 68160.6i | 0.0722927i | 0.999347 | + | 0.0361464i | \(0.0115083\pi\) | ||||
−0.999347 | + | 0.0361464i | \(0.988492\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −185210. | −0.195631 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 791113.i | 0.828799i | 0.910095 | + | 0.414399i | \(0.136008\pi\) | ||||
−0.910095 | + | 0.414399i | \(0.863992\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −71974.0 | −0.0750949 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 1.09523e6i | 1.13344i | 0.823912 | + | 0.566718i | \(0.191787\pi\) | ||||
−0.823912 | + | 0.566718i | \(0.808213\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −761950. | −0.785334 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 1.04300e6i | 1.06633i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −278492. | −0.283573 | −0.141787 | − | 0.989897i | \(-0.545285\pi\) | ||||
−0.141787 | + | 0.989897i | \(0.545285\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 304488.i | − 0.307556i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 1.33145e6 | 1.33947 | 0.669736 | − | 0.742599i | \(-0.266407\pi\) | ||||
0.669736 | + | 0.742599i | \(0.266407\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1296.5.e.c.161.3 | 6 | ||
3.2 | odd | 2 | inner | 1296.5.e.c.161.4 | 6 | ||
4.3 | odd | 2 | 81.5.b.a.80.1 | 6 | |||
9.2 | odd | 6 | 432.5.q.a.17.2 | 6 | |||
9.4 | even | 3 | 432.5.q.a.305.2 | 6 | |||
9.5 | odd | 6 | 144.5.q.a.65.2 | 6 | |||
9.7 | even | 3 | 144.5.q.a.113.2 | 6 | |||
12.11 | even | 2 | 81.5.b.a.80.6 | 6 | |||
36.7 | odd | 6 | 9.5.d.a.5.1 | yes | 6 | ||
36.11 | even | 6 | 27.5.d.a.17.3 | 6 | |||
36.23 | even | 6 | 9.5.d.a.2.1 | ✓ | 6 | ||
36.31 | odd | 6 | 27.5.d.a.8.3 | 6 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
9.5.d.a.2.1 | ✓ | 6 | 36.23 | even | 6 | ||
9.5.d.a.5.1 | yes | 6 | 36.7 | odd | 6 | ||
27.5.d.a.8.3 | 6 | 36.31 | odd | 6 | |||
27.5.d.a.17.3 | 6 | 36.11 | even | 6 | |||
81.5.b.a.80.1 | 6 | 4.3 | odd | 2 | |||
81.5.b.a.80.6 | 6 | 12.11 | even | 2 | |||
144.5.q.a.65.2 | 6 | 9.5 | odd | 6 | |||
144.5.q.a.113.2 | 6 | 9.7 | even | 3 | |||
432.5.q.a.17.2 | 6 | 9.2 | odd | 6 | |||
432.5.q.a.305.2 | 6 | 9.4 | even | 3 | |||
1296.5.e.c.161.3 | 6 | 1.1 | even | 1 | trivial | ||
1296.5.e.c.161.4 | 6 | 3.2 | odd | 2 | inner |