Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1296,5,Mod(161,1296)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1296.161");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(133.967472157\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.39400128.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{5} + 11x^{4} + 14x^{3} + 98x^{2} + 20x + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{3}\cdot 3^{9} \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 161.1 | ||
Root | \(-0.102534 - 0.177594i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1296.161 |
Dual form | 1296.5.e.c.161.6 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(1135\) | \(1217\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 34.7338i | − 1.38935i | −0.719323 | − | 0.694676i | \(-0.755548\pi\) | ||||
0.719323 | − | 0.694676i | \(-0.244452\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 31.2109 | 0.636956 | 0.318478 | − | 0.947930i | \(-0.396828\pi\) | ||||
0.318478 | + | 0.947930i | \(0.396828\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 57.7314i | 0.477119i | 0.971128 | + | 0.238559i | \(0.0766752\pi\) | ||||
−0.971128 | + | 0.238559i | \(0.923325\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −73.2956 | −0.433702 | −0.216851 | − | 0.976205i | \(-0.569578\pi\) | ||||
−0.216851 | + | 0.976205i | \(0.569578\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 386.985i | − 1.33905i | −0.742791 | − | 0.669524i | \(-0.766498\pi\) | ||||
0.742791 | − | 0.669524i | \(-0.233502\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −115.791 | −0.320750 | −0.160375 | − | 0.987056i | \(-0.551270\pi\) | ||||
−0.160375 | + | 0.987056i | \(0.551270\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 548.312i | 1.03651i | 0.855227 | + | 0.518253i | \(0.173417\pi\) | ||||
−0.855227 | + | 0.518253i | \(0.826583\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −581.437 | −0.930299 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 785.291i | 0.933758i | 0.884321 | + | 0.466879i | \(0.154622\pi\) | ||||
−0.884321 | + | 0.466879i | \(0.845378\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −544.734 | −0.566840 | −0.283420 | − | 0.958996i | \(-0.591469\pi\) | ||||
−0.283420 | + | 0.958996i | \(0.591469\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | − 1084.07i | − 0.884957i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 898.827 | 0.656557 | 0.328279 | − | 0.944581i | \(-0.393532\pi\) | ||||
0.328279 | + | 0.944581i | \(0.393532\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 2588.85i | 1.54007i | 0.638003 | + | 0.770034i | \(0.279761\pi\) | ||||
−0.638003 | + | 0.770034i | \(0.720239\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −2000.11 | −1.08172 | −0.540862 | − | 0.841111i | \(-0.681902\pi\) | ||||
−0.540862 | + | 0.841111i | \(0.681902\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 811.345i | − 0.367291i | −0.982993 | − | 0.183645i | \(-0.941210\pi\) | ||||
0.982993 | − | 0.183645i | \(-0.0587898\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1426.88 | −0.594287 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2221.00i | 0.790672i | 0.918537 | + | 0.395336i | \(0.129372\pi\) | ||||
−0.918537 | + | 0.395336i | \(0.870628\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 2005.23 | 0.662886 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 1512.26i | − 0.434432i | −0.976124 | − | 0.217216i | \(-0.930302\pi\) | ||||
0.976124 | − | 0.217216i | \(-0.0696976\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −1902.56 | −0.511304 | −0.255652 | − | 0.966769i | \(-0.582290\pi\) | ||||
−0.255652 | + | 0.966769i | \(0.582290\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 2545.83i | 0.602564i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4507.09 | −1.00403 | −0.502015 | − | 0.864859i | \(-0.667408\pi\) | ||||
−0.502015 | + | 0.864859i | \(0.667408\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 3993.54i | − 0.792213i | −0.918205 | − | 0.396106i | \(-0.870361\pi\) | ||||
0.918205 | − | 0.396106i | \(-0.129639\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −3436.70 | −0.644905 | −0.322452 | − | 0.946586i | \(-0.604507\pi\) | ||||
−0.322452 | + | 0.946586i | \(0.604507\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 1801.85i | 0.303904i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −1202.78 | −0.192722 | −0.0963608 | − | 0.995346i | \(-0.530720\pi\) | ||||
−0.0963608 | + | 0.995346i | \(0.530720\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 9256.34i | 1.34364i | 0.740714 | + | 0.671820i | \(0.234487\pi\) | ||||
−0.740714 | + | 0.671820i | \(0.765513\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −13441.4 | −1.86041 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 8929.99i | − 1.12738i | −0.825986 | − | 0.563691i | \(-0.809381\pi\) | ||||
0.825986 | − | 0.563691i | \(-0.190619\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −2287.62 | −0.276249 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 4021.86i | 0.445635i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 6670.29 | 0.708926 | 0.354463 | − | 0.935070i | \(-0.384664\pi\) | ||||
0.354463 | + | 0.935070i | \(0.384664\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 9150.06i | 0.896977i | 0.893789 | + | 0.448489i | \(0.148038\pi\) | ||||
−0.893789 | + | 0.448489i | \(0.851962\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −15312.4 | −1.44334 | −0.721670 | − | 0.692237i | \(-0.756625\pi\) | ||||
−0.721670 | + | 0.692237i | \(0.756625\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 6099.28i | − 0.532735i | −0.963872 | − | 0.266367i | \(-0.914177\pi\) | ||||
0.963872 | − | 0.266367i | \(-0.0858234\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 15169.5 | 1.27679 | 0.638393 | − | 0.769710i | \(-0.279599\pi\) | ||||
0.638393 | + | 0.769710i | \(0.279599\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 1373.06i | − 0.107531i | −0.998554 | − | 0.0537655i | \(-0.982878\pi\) | ||||
0.998554 | − | 0.0537655i | \(-0.0171224\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 19045.0 | 1.44007 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − 12078.1i | − 0.852914i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11308.1 | 0.772358 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 1513.10i | − 0.0968386i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 19152.4 | 1.18745 | 0.593726 | − | 0.804667i | \(-0.297656\pi\) | ||||
0.593726 | + | 0.804667i | \(0.297656\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 3020.00i | 0.175980i | 0.996121 | + | 0.0879902i | \(0.0280444\pi\) | ||||
−0.996121 | + | 0.0879902i | \(0.971956\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −3613.93 | −0.204304 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 10147.9i | 0.540671i | 0.962766 | + | 0.270336i | \(0.0871346\pi\) | ||||
−0.962766 | + | 0.270336i | \(0.912865\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 35126.4 | 1.81804 | 0.909021 | − | 0.416751i | \(-0.136831\pi\) | ||||
0.909021 | + | 0.416751i | \(0.136831\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 4231.45i | − 0.206927i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 27276.1 | 1.29732 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 37382.0i | 1.68380i | 0.539636 | + | 0.841899i | \(0.318562\pi\) | ||||
−0.539636 | + | 0.841899i | \(0.681438\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −33270.0 | −1.45915 | −0.729573 | − | 0.683903i | \(-0.760281\pi\) | ||||
−0.729573 | + | 0.683903i | \(0.760281\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 18920.7i | 0.787541i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 8080.33 | 0.327816 | 0.163908 | − | 0.986476i | \(-0.447590\pi\) | ||||
0.163908 | + | 0.986476i | \(0.447590\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 17113.3i | 0.660209i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 25427.1 | 0.957022 | 0.478511 | − | 0.878081i | \(-0.341177\pi\) | ||||
0.478511 | + | 0.878081i | \(0.341177\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 35052.8i | 1.25687i | 0.777863 | + | 0.628434i | \(0.216304\pi\) | ||||
−0.777863 | + | 0.628434i | \(0.783696\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −23188.8 | −0.811903 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 14700.5i | − 0.491177i | −0.969374 | − | 0.245589i | \(-0.921019\pi\) | ||||
0.969374 | − | 0.245589i | \(-0.0789813\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −18147.2 | −0.592560 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 37052.5i | 1.15641i | 0.815892 | + | 0.578205i | \(0.196247\pi\) | ||||
−0.815892 | + | 0.578205i | \(0.803753\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −39664.7 | −1.21073 | −0.605365 | − | 0.795948i | \(-0.706973\pi\) | ||||
−0.605365 | + | 0.795948i | \(0.706973\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | − 31219.7i | − 0.912189i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 22341.2 | 0.638885 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 57637.0i | 1.57992i | 0.613160 | + | 0.789959i | \(0.289898\pi\) | ||||
−0.613160 | + | 0.789959i | \(0.710102\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4179.63 | 0.112208 | 0.0561039 | − | 0.998425i | \(-0.482132\pi\) | ||||
0.0561039 | + | 0.998425i | \(0.482132\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 22191.5i | − 0.571812i | −0.958258 | − | 0.285906i | \(-0.907705\pi\) | ||||
0.958258 | − | 0.285906i | \(-0.0922945\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −50608.7 | −1.27797 | −0.638983 | − | 0.769221i | \(-0.720645\pi\) | ||||
−0.638983 | + | 0.769221i | \(0.720645\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 24509.6i | 0.594763i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 89920.7 | 2.13970 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − 6684.77i | − 0.153036i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8918.05 | 0.200311 | 0.100156 | − | 0.994972i | \(-0.468066\pi\) | ||||
0.100156 | + | 0.994972i | \(0.468066\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 69471.4i | 1.50290i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −17001.6 | −0.361052 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 28364.3i | 0.580747i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8497.53 | 0.170877 | 0.0854384 | − | 0.996343i | \(-0.472771\pi\) | ||||
0.0854384 | + | 0.996343i | \(0.472771\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 19102.8i | 0.370719i | 0.982671 | + | 0.185360i | \(0.0593450\pi\) | ||||
−0.982671 | + | 0.185360i | \(0.940655\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10723.0 | −0.204478 | −0.102239 | − | 0.994760i | \(-0.532601\pi\) | ||||
−0.102239 | + | 0.994760i | \(0.532601\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 102200.i | 1.88251i | 0.337694 | + | 0.941256i | \(0.390353\pi\) | ||||
−0.337694 | + | 0.941256i | \(0.609647\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −28181.1 | −0.510296 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − 15520.2i | − 0.271707i | −0.990729 | − | 0.135854i | \(-0.956622\pi\) | ||||
0.990729 | − | 0.135854i | \(-0.0433777\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −71957.8 | −1.23892 | −0.619461 | − | 0.785028i | \(-0.712649\pi\) | ||||
−0.619461 | + | 0.785028i | \(0.712649\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 49561.1i | 0.825674i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 8486.96 | 0.139110 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 41487.8i | 0.658526i | 0.944238 | + | 0.329263i | \(0.106800\pi\) | ||||
−0.944238 | + | 0.329263i | \(0.893200\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −31654.8 | −0.494537 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 72529.3i | − 1.09811i | −0.835785 | − | 0.549057i | \(-0.814987\pi\) | ||||
0.835785 | − | 0.549057i | \(-0.185013\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 28053.1 | 0.418198 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 85890.2i | − 1.24174i | −0.783912 | − | 0.620872i | \(-0.786779\pi\) | ||||
0.783912 | − | 0.620872i | \(-0.213221\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 77143.7 | 1.09852 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 88967.6i | 1.22950i | 0.788724 | + | 0.614748i | \(0.210742\pi\) | ||||
−0.788724 | + | 0.614748i | \(0.789258\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −96541.6 | −1.31455 | −0.657273 | − | 0.753652i | \(-0.728290\pi\) | ||||
−0.657273 | + | 0.753652i | \(0.728290\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | − 33567.2i | − 0.443863i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −23541.6 | −0.306815 | −0.153407 | − | 0.988163i | \(-0.549025\pi\) | ||||
−0.153407 | + | 0.988163i | \(0.549025\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 58409.9i | 0.739731i | 0.929085 | + | 0.369865i | \(0.120596\pi\) | ||||
−0.929085 | + | 0.369865i | \(0.879404\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 76117.3 | 0.950408 | 0.475204 | − | 0.879876i | \(-0.342374\pi\) | ||||
0.475204 | + | 0.879876i | \(0.342374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 80800.3i | 0.980956i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −66236.1 | −0.793047 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 139911.i | 1.62973i | 0.579649 | + | 0.814866i | \(0.303190\pi\) | ||||
−0.579649 | + | 0.814866i | \(0.696810\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −52526.4 | −0.603579 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 40188.8i | − 0.449534i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −62425.1 | −0.689011 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 66083.2i | 0.710381i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 81796.8 | 0.867880 | 0.433940 | − | 0.900942i | \(-0.357123\pi\) | ||||
0.433940 | + | 0.900942i | \(0.357123\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 1702.71i | 0.0176043i | 0.999961 | + | 0.00880216i | \(0.00280185\pi\) | ||||
−0.999961 | + | 0.00880216i | \(0.997198\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −69960.1 | −0.714105 | −0.357052 | − | 0.934084i | \(-0.616218\pi\) | ||||
−0.357052 | + | 0.934084i | \(0.616218\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 116629.i | − 1.16062i | −0.814397 | − | 0.580309i | \(-0.802932\pi\) | ||||
0.814397 | − | 0.580309i | \(-0.197068\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −45335.9 | −0.445514 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 44809.3i | 0.429500i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 42616.8 | 0.403472 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | − 25322.8i | − 0.233948i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −100836. | −0.920366 | −0.460183 | − | 0.887824i | \(-0.652216\pi\) | ||||
−0.460183 | + | 0.887824i | \(0.652216\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 156549.i | 1.39495i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 40094.5 | 0.353041 | 0.176520 | − | 0.984297i | \(-0.443516\pi\) | ||||
0.176520 | + | 0.984297i | \(0.443516\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | − 31448.2i | − 0.270450i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −119471. | −1.01549 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 226362.i | 1.87994i | 0.341254 | + | 0.939971i | \(0.389148\pi\) | ||||
−0.341254 | + | 0.939971i | \(0.610852\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 79598.3 | 0.653511 | 0.326755 | − | 0.945109i | \(-0.394045\pi\) | ||||
0.326755 | + | 0.945109i | \(0.394045\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 139919.i | 1.12286i | 0.827523 | + | 0.561431i | \(0.189749\pi\) | ||||
−0.827523 | + | 0.561431i | \(0.810251\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −138711. | −1.10066 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 211616.i | − 1.64195i | −0.570963 | − | 0.820976i | \(-0.693430\pi\) | ||||
0.570963 | − | 0.820976i | \(-0.306570\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −116913. | −0.897119 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 119370.i | 0.896000i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 31993.6 | 0.237537 | 0.118769 | − | 0.992922i | \(-0.462105\pi\) | ||||
0.118769 | + | 0.992922i | \(0.462105\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 69319.2i | 0.503623i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −123148. | −0.885133 | −0.442567 | − | 0.896736i | \(-0.645932\pi\) | ||||
−0.442567 | + | 0.896736i | \(0.645932\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 57558.3i | − 0.404972i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 116524. | 0.811218 | 0.405609 | − | 0.914047i | \(-0.367059\pi\) | ||||
0.405609 | + | 0.914047i | \(0.367059\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 181112.i | − 1.23467i | −0.786701 | − | 0.617334i | \(-0.788213\pi\) | ||||
0.786701 | − | 0.617334i | \(-0.211787\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 62585.0 | 0.422229 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 50827.4i | 0.335892i | 0.985796 | + | 0.167946i | \(0.0537134\pi\) | ||||
−0.985796 | + | 0.167946i | \(0.946287\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 212188. | 1.38793 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 41777.0i | 0.267758i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 228710. | 1.45112 | 0.725561 | − | 0.688158i | \(-0.241580\pi\) | ||||
0.725561 | + | 0.688158i | \(0.241580\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 188930.i | 1.17493i | 0.809250 | + | 0.587465i | \(0.199874\pi\) | ||||
−0.809250 | + | 0.587465i | \(0.800126\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 39926.5 | 0.245840 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 51890.5i | 0.313256i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 277427. | 1.65845 | 0.829223 | − | 0.558918i | \(-0.188783\pi\) | ||||
0.829223 | + | 0.558918i | \(0.188783\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 47198.8i | − 0.276714i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 321508. | 1.86679 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 102422.i | 0.583397i | 0.956510 | + | 0.291699i | \(0.0942205\pi\) | ||||
−0.956510 | + | 0.291699i | \(0.905780\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 47135.8 | 0.265942 | 0.132971 | − | 0.991120i | \(-0.457548\pi\) | ||||
0.132971 | + | 0.991120i | \(0.457548\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 225007.i | 1.24571i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −59380.6 | −0.325678 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 45556.1i | − 0.245240i | −0.992454 | − | 0.122620i | \(-0.960870\pi\) | ||||
0.992454 | − | 0.122620i | \(-0.0391297\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 209599. | 1.11793 | 0.558965 | − | 0.829192i | \(-0.311199\pi\) | ||||
0.558965 | + | 0.829192i | \(0.311199\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 63489.5i | − 0.332460i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 183684. | 0.953110 | 0.476555 | − | 0.879145i | \(-0.341885\pi\) | ||||
0.476555 | + | 0.879145i | \(0.341885\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 115943.i | − 0.590795i | −0.955374 | − | 0.295398i | \(-0.904548\pi\) | ||||
0.955374 | − | 0.295398i | \(-0.0954521\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −310172. | −1.56633 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 328940.i | 1.63164i | 0.578305 | + | 0.815820i | \(0.303714\pi\) | ||||
−0.578305 | + | 0.815820i | \(0.696286\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −149458. | −0.734795 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 79457.6i | 0.383807i | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −212737. | −1.01862 | −0.509308 | − | 0.860584i | \(-0.670099\pi\) | ||||
−0.509308 | + | 0.860584i | \(0.670099\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 48448.1i | 0.227968i | 0.993483 | + | 0.113984i | \(0.0363613\pi\) | ||||
−0.993483 | + | 0.113984i | \(0.963639\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −169101. | −0.788832 | −0.394416 | − | 0.918932i | \(-0.629053\pi\) | ||||
−0.394416 | + | 0.918932i | \(0.629053\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 54646.4i | 0.250569i | 0.992121 | + | 0.125285i | \(0.0399844\pi\) | ||||
−0.992121 | + | 0.125285i | \(0.960016\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −140670. | −0.639524 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 115469.i | − 0.516111i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 67325.1 | 0.298394 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 138577.i | − 0.603978i | −0.953311 | − | 0.301989i | \(-0.902349\pi\) | ||||
0.953311 | − | 0.301989i | \(-0.0976506\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −65880.0 | −0.284750 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | − 231684.i | − 0.984948i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −23464.1 | −0.0989340 | −0.0494670 | − | 0.998776i | \(-0.515752\pi\) | ||||
−0.0494670 | + | 0.998776i | \(0.515752\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − 74326.7i | − 0.308306i | −0.988047 | − | 0.154153i | \(-0.950735\pi\) | ||||
0.988047 | − | 0.154153i | \(-0.0492649\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 303895. | 1.25035 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 124642.i | − 0.504605i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 18972.0 | 0.0761925 | 0.0380963 | − | 0.999274i | \(-0.487871\pi\) | ||||
0.0380963 | + | 0.999274i | \(0.487871\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 117856.i | 0.465818i | 0.972498 | + | 0.232909i | \(0.0748245\pi\) | ||||
−0.972498 | + | 0.232909i | \(0.925175\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 317816. | 1.24622 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 183460.i | 0.708120i | 0.935223 | + | 0.354060i | \(0.115199\pi\) | ||||
−0.935223 | + | 0.354060i | \(0.884801\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −107262. | −0.410776 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 531858.i | 2.00531i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 46840.1 | 0.175241 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | − 409498.i | − 1.50861i | −0.656526 | − | 0.754303i | \(-0.727975\pi\) | ||||
0.656526 | − | 0.754303i | \(-0.272025\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 211852. | 0.774513 | 0.387256 | − | 0.921972i | \(-0.373423\pi\) | ||||
0.387256 | + | 0.921972i | \(0.373423\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 210804.i | 0.759026i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −20804.7 | −0.0743448 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 189751.i | − 0.667930i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −211851. | −0.740156 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 82375.9i | − 0.283545i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 44016.5 | 0.150391 | 0.0751954 | − | 0.997169i | \(-0.476042\pi\) | ||||
0.0751954 | + | 0.997169i | \(0.476042\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | − 526894.i | − 1.77391i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 42859.1 | 0.143241 | 0.0716207 | − | 0.997432i | \(-0.477183\pi\) | ||||
0.0716207 | + | 0.997432i | \(0.477183\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 90929.5i | − 0.299503i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −37539.6 | −0.122755 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 311007.i | − 1.00244i | −0.865319 | − | 0.501222i | \(-0.832884\pi\) | ||||
0.865319 | − | 0.501222i | \(-0.167116\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 146599. | 0.469145 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 285768.i | 0.901563i | 0.892634 | + | 0.450782i | \(0.148855\pi\) | ||||
−0.892634 | + | 0.450782i | \(0.851145\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −47691.7 | −0.149398 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 136683.i | 0.422171i | 0.977468 | + | 0.211086i | \(0.0676999\pi\) | ||||
−0.977468 | + | 0.211086i | \(0.932300\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 28510.0 | 0.0874431 | 0.0437215 | − | 0.999044i | \(-0.486079\pi\) | ||||
0.0437215 | + | 0.999044i | \(0.486079\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − 318809.i | − 0.964261i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −293742. | −0.882297 | −0.441149 | − | 0.897434i | \(-0.645429\pi\) | ||||
−0.441149 | + | 0.897434i | \(0.645429\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 288898.i | 0.855840i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −128221. | −0.377244 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 386055.i | 1.12040i | 0.828357 | + | 0.560200i | \(0.189276\pi\) | ||||
−0.828357 | + | 0.560200i | \(0.810724\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 63075.2 | 0.181814 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 305581.i | 0.868995i | 0.900673 | + | 0.434497i | \(0.143074\pi\) | ||||
−0.900673 | + | 0.434497i | \(0.856926\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | −419519. | −1.18500 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 264738.i | − 0.737840i | −0.929461 | − | 0.368920i | \(-0.879728\pi\) | ||||
0.929461 | − | 0.368920i | \(-0.120272\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −132203. | −0.366009 | −0.183005 | − | 0.983112i | \(-0.558582\pi\) | ||||
−0.183005 | + | 0.983112i | \(0.558582\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 392773.i | − 1.07308i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 254146. | 0.689772 | 0.344886 | − | 0.938645i | \(-0.387918\pi\) | ||||
0.344886 | + | 0.938645i | \(0.387918\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 59468.0i | 0.159295i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −492878. | −1.31165 | −0.655826 | − | 0.754912i | \(-0.727680\pi\) | ||||
−0.655826 | + | 0.754912i | \(0.727680\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 121278.i | − 0.318574i | −0.987232 | − | 0.159287i | \(-0.949081\pi\) | ||||
0.987232 | − | 0.159287i | \(-0.0509195\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −307364. | −0.802180 | −0.401090 | − | 0.916039i | \(-0.631369\pi\) | ||||
−0.401090 | + | 0.916039i | \(0.631369\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 278713.i | − 0.718092i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −415954. | −1.06484 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 347832.i | − 0.879161i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 254196. | 0.638425 | 0.319212 | − | 0.947683i | \(-0.396582\pi\) | ||||
0.319212 | + | 0.947683i | \(0.396582\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 665236.i | − 1.64979i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 104584. | 0.257743 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − 365987.i | − 0.890736i | −0.895348 | − | 0.445368i | \(-0.853073\pi\) | ||||
0.895348 | − | 0.445368i | \(-0.146927\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −230783. | −0.558189 | −0.279094 | − | 0.960264i | \(-0.590034\pi\) | ||||
−0.279094 | + | 0.960264i | \(0.590034\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 278596.i | − 0.665529i | −0.943010 | − | 0.332764i | \(-0.892019\pi\) | ||||
0.943010 | − | 0.332764i | \(-0.107981\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 87304.7 | 0.207276 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 78506.8i | − 0.184111i | −0.995754 | − | 0.0920557i | \(-0.970656\pi\) | ||||
0.995754 | − | 0.0920557i | \(-0.0293438\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 104896. | 0.244499 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 857273.i | − 1.97401i | −0.160703 | − | 0.987003i | \(-0.551376\pi\) | ||||
0.160703 | − | 0.987003i | \(-0.448624\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22344.0 | 0.0511396 | 0.0255698 | − | 0.999673i | \(-0.491860\pi\) | ||||
0.0255698 | + | 0.999673i | \(0.491860\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 125526.i | 0.283850i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −430584. | −0.967846 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 109838.i | − 0.243953i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −663478. | −1.46486 | −0.732430 | − | 0.680842i | \(-0.761614\pi\) | ||||
−0.732430 | + | 0.680842i | \(0.761614\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 228121.i | 0.497722i | 0.968539 | + | 0.248861i | \(0.0800563\pi\) | ||||
−0.968539 | + | 0.248861i | \(0.919944\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 208185. | 0.451555 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 53606.6i | − 0.114915i | −0.998348 | − | 0.0574575i | \(-0.981701\pi\) | ||||
0.998348 | − | 0.0574575i | \(-0.0182994\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 352474. | 0.751182 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | − 162789.i | − 0.342915i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −757326. | −1.58609 | −0.793043 | − | 0.609166i | \(-0.791504\pi\) | ||||
−0.793043 | + | 0.609166i | \(0.791504\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 1.22007e6i | − 2.52590i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 1.00185e6 | 2.06222 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 506359.i | 1.03044i | 0.857058 | + | 0.515220i | \(0.172290\pi\) | ||||
−0.857058 | + | 0.515220i | \(0.827710\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −104076. | −0.210591 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 285581.i | 0.571335i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −651243. | −1.29554 | −0.647770 | − | 0.761836i | \(-0.724298\pi\) | ||||
−0.647770 | + | 0.761836i | \(0.724298\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 298684.i | − 0.587533i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −146974. | −0.287495 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 69724.6i | 0.134874i | 0.997724 | + | 0.0674370i | \(0.0214822\pi\) | ||||
−0.997724 | + | 0.0674370i | \(0.978518\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −477913. | −0.919345 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 456597.i | − 0.868675i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 747728. | 1.41473 | 0.707367 | − | 0.706846i | \(-0.249883\pi\) | ||||
0.707367 | + | 0.706846i | \(0.249883\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 774011.i | 1.44848i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 65738.5 | 0.122352 | 0.0611761 | − | 0.998127i | \(-0.480515\pi\) | ||||
0.0611761 | + | 0.998127i | \(0.480515\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 260201.i | − 0.479042i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −977921. | −1.79067 | −0.895334 | − | 0.445395i | \(-0.853063\pi\) | ||||
−0.895334 | + | 0.445395i | \(0.853063\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 504874.i | − 0.914545i | −0.889327 | − | 0.457272i | \(-0.848826\pi\) | ||||
0.889327 | − | 0.457272i | \(-0.151174\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 1.29842e6 | 2.33939 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 190364.i | − 0.339329i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 532791. | 0.944663 | 0.472332 | − | 0.881421i | \(-0.343412\pi\) | ||||
0.472332 | + | 0.881421i | \(0.343412\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 1.15559e6i | 2.02727i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −293571. | −0.512297 | −0.256148 | − | 0.966637i | \(-0.582454\pi\) | ||||
−0.256148 | + | 0.966637i | \(0.582454\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 25691.2i | − 0.0443624i | −0.999754 | − | 0.0221812i | \(-0.992939\pi\) | ||||
0.999754 | − | 0.0221812i | \(-0.00706108\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 473453. | 0.813257 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 110842.i | 0.188414i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −647144. | −1.09433 | −0.547165 | − | 0.837025i | \(-0.684293\pi\) | ||||
−0.547165 | + | 0.837025i | \(0.684293\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 610238.i | 1.02127i | 0.859798 | + | 0.510634i | \(0.170589\pi\) | ||||
−0.859798 | + | 0.510634i | \(0.829411\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 316728. | 0.527331 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 299766.i | − 0.493977i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 230553. | 0.377980 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 280661.i | − 0.455451i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 580321. | 0.936955 | 0.468477 | − | 0.883475i | \(-0.344803\pi\) | ||||
0.468477 | + | 0.883475i | \(0.344803\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | − 42854.5i | − 0.0684926i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 139449. | 0.221753 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 1.05714e6i | − 1.66424i | −0.554598 | − | 0.832118i | \(-0.687128\pi\) | ||||
0.554598 | − | 0.832118i | \(-0.312872\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −313978. | −0.491820 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 198405.i | − 0.307696i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 594409. | 0.917263 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | − 355969.i | − 0.543895i | −0.962312 | − | 0.271947i | \(-0.912332\pi\) | ||||
0.962312 | − | 0.271947i | \(-0.0876677\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 136417. | 0.207409 | 0.103704 | − | 0.994608i | \(-0.466930\pi\) | ||||
0.103704 | + | 0.994608i | \(0.466930\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | − 883181.i | − 1.32964i | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 231594. | 0.346964 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 455979.i | 0.676485i | 0.941059 | + | 0.338243i | \(0.109832\pi\) | ||||
−0.941059 | + | 0.338243i | \(0.890168\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −503590. | −0.743494 | −0.371747 | − | 0.928334i | \(-0.621241\pi\) | ||||
−0.371747 | + | 0.928334i | \(0.621241\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 551861.i | − 0.806898i | −0.915002 | − | 0.403449i | \(-0.867811\pi\) | ||||
0.915002 | − | 0.403449i | \(-0.132189\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −182308. | −0.265275 | −0.132638 | − | 0.991165i | \(-0.542345\pi\) | ||||
−0.132638 | + | 0.991165i | \(0.542345\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 552182.i | 0.795778i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 1.21752e6 | 1.74623 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 415684.i | − 0.590526i | −0.955416 | − | 0.295263i | \(-0.904593\pi\) | ||||
0.955416 | − | 0.295263i | \(-0.0954073\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 90599.4 | 0.128095 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 805434.i | 1.12802i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 352935. | 0.491958 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 492837.i | 0.680525i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 150271. | 0.206527 | 0.103263 | − | 0.994654i | \(-0.467072\pi\) | ||||
0.103263 | + | 0.994654i | \(0.467072\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 144768.i | − 0.197111i | −0.995132 | − | 0.0985554i | \(-0.968578\pi\) | ||||
0.995132 | − | 0.0985554i | \(-0.0314222\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −333897. | −0.452508 | −0.226254 | − | 0.974068i | \(-0.572648\pi\) | ||||
−0.226254 | + | 0.974068i | \(0.572648\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 1.13280e6i | − 1.52101i | −0.649330 | − | 0.760507i | \(-0.724951\pi\) | ||||
0.649330 | − | 0.760507i | \(-0.275049\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −510603. | −0.682418 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 69437.9i | − 0.0919511i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 330350. | 0.435450 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | − 47225.2i | − 0.0616820i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 496541. | 0.645589 | 0.322795 | − | 0.946469i | \(-0.395378\pi\) | ||||
0.322795 | + | 0.946469i | \(0.395378\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | − 1.21533e6i | − 1.56583i | −0.622131 | − | 0.782913i | \(-0.713733\pi\) | ||||
0.622131 | − | 0.782913i | \(-0.286267\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 999070. | 1.28137 | 0.640685 | − | 0.767804i | \(-0.278651\pi\) | ||||
0.640685 | + | 0.767804i | \(0.278651\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 1.08316e6i | − 1.37672i | −0.725367 | − | 0.688362i | \(-0.758330\pi\) | ||||
0.725367 | − | 0.688362i | \(-0.241670\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 597763. | 0.756355 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 93946.4i | 0.117809i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 1.28698e6 | 1.60666 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 427774.i | − 0.529292i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 859491. | 1.05875 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 1.37771e6i | 1.68213i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −1.27685e6 | −1.55212 | −0.776061 | − | 0.630658i | \(-0.782785\pi\) | ||||
−0.776061 | + | 0.630658i | \(0.782785\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 273486.i | 0.329532i | 0.986333 | + | 0.164766i | \(0.0526869\pi\) | ||||
−0.986333 | + | 0.164766i | \(0.947313\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −534381. | −0.641076 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 94256.7i | 0.112092i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −1.15882e6 | −1.37210 | −0.686051 | − | 0.727553i | \(-0.740657\pi\) | ||||
−0.686051 | + | 0.727553i | \(0.740657\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 292709.i | 0.343584i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −522611. | −0.610795 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 852706.i | − 0.988025i | −0.869455 | − | 0.494012i | \(-0.835530\pi\) | ||||
0.869455 | − | 0.494012i | \(-0.164470\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 165220. | 0.190618 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | − 775993.i | − 0.887636i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 629989. | 0.717552 | 0.358776 | − | 0.933424i | \(-0.383194\pi\) | ||||
0.358776 | + | 0.933424i | \(0.383194\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 423252.i | − 0.477991i | −0.971021 | − | 0.238996i | \(-0.923182\pi\) | ||||
0.971021 | − | 0.238996i | \(-0.0768182\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −1.41950e6 | −1.59629 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 1.39444e6i | − 1.55489i | −0.628952 | − | 0.777444i | \(-0.716516\pi\) | ||||
0.628952 | − | 0.777444i | \(-0.283484\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 251895. | 0.279696 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 24001.0i | 0.0264267i | 0.999913 | + | 0.0132134i | \(0.00420607\pi\) | ||||
−0.999913 | + | 0.0132134i | \(0.995794\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 2.00195e6 | 2.19506 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 316723.i | 0.344384i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −626786. | −0.678692 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | − 145174.i | − 0.155896i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −1.04406e6 | −1.11654 | −0.558268 | − | 0.829660i | \(-0.688534\pi\) | ||||
−0.558268 | + | 0.829660i | \(0.688534\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 605213.i | 0.641904i | 0.947096 | + | 0.320952i | \(0.104003\pi\) | ||||
−0.947096 | + | 0.320952i | \(0.895997\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 1.09632e6 | 1.15801 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 48105.1i | 0.0503967i | 0.999682 | + | 0.0251983i | \(0.00802173\pi\) | ||||
−0.999682 | + | 0.0251983i | \(0.991978\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 515540. | 0.537895 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 123883.i | − 0.128205i | −0.997943 | − | 0.0641024i | \(-0.979582\pi\) | ||||
0.997943 | − | 0.0641024i | \(-0.0204184\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −770794. | −0.794448 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 1.09668e6i | − 1.12121i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −851418. | −0.866953 | −0.433477 | − | 0.901165i | \(-0.642713\pi\) | ||||
−0.433477 | + | 0.901165i | \(0.642713\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 1.75783e6i | 1.77555i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −1.60305e6 | −1.61271 | −0.806355 | − | 0.591432i | \(-0.798563\pi\) | ||||
−0.806355 | + | 0.591432i | \(0.798563\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1296.5.e.c.161.1 | 6 | ||
3.2 | odd | 2 | inner | 1296.5.e.c.161.6 | 6 | ||
4.3 | odd | 2 | 81.5.b.a.80.3 | 6 | |||
9.2 | odd | 6 | 144.5.q.a.113.1 | 6 | |||
9.4 | even | 3 | 144.5.q.a.65.1 | 6 | |||
9.5 | odd | 6 | 432.5.q.a.305.3 | 6 | |||
9.7 | even | 3 | 432.5.q.a.17.3 | 6 | |||
12.11 | even | 2 | 81.5.b.a.80.4 | 6 | |||
36.7 | odd | 6 | 27.5.d.a.17.2 | 6 | |||
36.11 | even | 6 | 9.5.d.a.5.2 | yes | 6 | ||
36.23 | even | 6 | 27.5.d.a.8.2 | 6 | |||
36.31 | odd | 6 | 9.5.d.a.2.2 | ✓ | 6 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
9.5.d.a.2.2 | ✓ | 6 | 36.31 | odd | 6 | ||
9.5.d.a.5.2 | yes | 6 | 36.11 | even | 6 | ||
27.5.d.a.8.2 | 6 | 36.23 | even | 6 | |||
27.5.d.a.17.2 | 6 | 36.7 | odd | 6 | |||
81.5.b.a.80.3 | 6 | 4.3 | odd | 2 | |||
81.5.b.a.80.4 | 6 | 12.11 | even | 2 | |||
144.5.q.a.65.1 | 6 | 9.4 | even | 3 | |||
144.5.q.a.113.1 | 6 | 9.2 | odd | 6 | |||
432.5.q.a.17.3 | 6 | 9.7 | even | 3 | |||
432.5.q.a.305.3 | 6 | 9.5 | odd | 6 | |||
1296.5.e.c.161.1 | 6 | 1.1 | even | 1 | trivial | ||
1296.5.e.c.161.6 | 6 | 3.2 | odd | 2 | inner |