Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1296,3,Mod(161,1296)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1296.161");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(35.3134422611\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 4x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 3^{3} \) |
Twist minimal: | no (minimal twist has level 162) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 161.2 | ||
Root | \(-0.517638i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1296.161 |
Dual form | 1296.3.e.d.161.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(1135\) | \(1217\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 1.55291i | − 0.310583i | −0.987869 | − | 0.155291i | \(-0.950368\pi\) | ||||
0.987869 | − | 0.155291i | \(-0.0496317\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −12.3923 | −1.77033 | −0.885165 | − | 0.465278i | \(-0.845954\pi\) | ||||
−0.885165 | + | 0.465278i | \(0.845954\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 14.6969i | 1.33609i | 0.744123 | + | 0.668043i | \(0.232868\pi\) | ||||
−0.744123 | + | 0.668043i | \(0.767132\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −10.8038 | −0.831065 | −0.415533 | − | 0.909578i | \(-0.636405\pi\) | ||||
−0.415533 | + | 0.909578i | \(0.636405\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 28.9778i | − 1.70457i | −0.523074 | − | 0.852287i | \(-0.675215\pi\) | ||||
0.523074 | − | 0.852287i | \(-0.324785\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −3.60770 | −0.189879 | −0.0949393 | − | 0.995483i | \(-0.530266\pi\) | ||||
−0.0949393 | + | 0.995483i | \(0.530266\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 14.6969i | − 0.638997i | −0.947587 | − | 0.319499i | \(-0.896486\pi\) | ||||
0.947587 | − | 0.319499i | \(-0.103514\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 22.5885 | 0.903538 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 28.1456i | 0.970537i | 0.874365 | + | 0.485268i | \(0.161278\pi\) | ||||
−0.874365 | + | 0.485268i | \(0.838722\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −0.258065 | −0.129032 | − | 0.991640i | \(-0.541187\pi\) | ||||
−0.129032 | + | 0.991640i | \(0.541187\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 19.2442i | 0.549834i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 22.5692 | 0.609979 | 0.304989 | − | 0.952356i | \(-0.401347\pi\) | ||||
0.304989 | + | 0.952356i | \(0.401347\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 25.1512i | 0.613445i | 0.951799 | + | 0.306722i | \(0.0992323\pi\) | ||||
−0.951799 | + | 0.306722i | \(0.900768\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 53.1769 | 1.23667 | 0.618336 | − | 0.785914i | \(-0.287807\pi\) | ||||
0.618336 | + | 0.785914i | \(0.287807\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 16.9706i | 0.361076i | 0.983568 | + | 0.180538i | \(0.0577838\pi\) | ||||
−0.983568 | + | 0.180538i | \(0.942216\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 104.569 | 2.13407 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 84.5482i | 1.59525i | 0.603154 | + | 0.797625i | \(0.293910\pi\) | ||||
−0.603154 | + | 0.797625i | \(0.706090\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 22.8231 | 0.414965 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 91.0645i | − 1.54347i | −0.635947 | − | 0.771733i | \(-0.719390\pi\) | ||||
0.635947 | − | 0.771733i | \(-0.280610\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −13.0000 | −0.213115 | −0.106557 | − | 0.994307i | \(-0.533983\pi\) | ||||
−0.106557 | + | 0.994307i | \(0.533983\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 16.7774i | 0.258115i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 41.1769 | 0.614581 | 0.307290 | − | 0.951616i | \(-0.400578\pi\) | ||||
0.307290 | + | 0.951616i | \(0.400578\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 16.3613i | − 0.230442i | −0.993340 | − | 0.115221i | \(-0.963242\pi\) | ||||
0.993340 | − | 0.115221i | \(-0.0367575\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 71.5885 | 0.980664 | 0.490332 | − | 0.871536i | \(-0.336876\pi\) | ||||
0.490332 | + | 0.871536i | \(0.336876\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 182.129i | − 2.36531i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 46.7461 | 0.591723 | 0.295862 | − | 0.955231i | \(-0.404393\pi\) | ||||
0.295862 | + | 0.955231i | \(0.404393\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 15.3062i | − 0.184411i | −0.995740 | − | 0.0922057i | \(-0.970608\pi\) | ||||
0.995740 | − | 0.0922057i | \(-0.0293917\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −45.0000 | −0.529412 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 78.9756i | − 0.887367i | −0.896184 | − | 0.443683i | \(-0.853671\pi\) | ||||
0.896184 | − | 0.443683i | \(-0.146329\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 133.885 | 1.47126 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 5.60244i | 0.0589731i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 91.1384 | 0.939572 | 0.469786 | − | 0.882780i | \(-0.344331\pi\) | ||||
0.469786 | + | 0.882780i | \(0.344331\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 88.4862i | 0.876101i | 0.898950 | + | 0.438051i | \(0.144331\pi\) | ||||
−0.898950 | + | 0.438051i | \(0.855669\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 152.708 | 1.48260 | 0.741299 | − | 0.671175i | \(-0.234210\pi\) | ||||
0.741299 | + | 0.671175i | \(0.234210\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 60.0062i | − 0.560805i | −0.959882 | − | 0.280403i | \(-0.909532\pi\) | ||||
0.959882 | − | 0.280403i | \(-0.0904680\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −93.9423 | −0.861856 | −0.430928 | − | 0.902386i | \(-0.641814\pi\) | ||||
−0.430928 | + | 0.902386i | \(0.641814\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 88.5977i | − 0.784051i | −0.919954 | − | 0.392025i | \(-0.871775\pi\) | ||||
0.919954 | − | 0.392025i | \(-0.128225\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −22.8231 | −0.198462 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 359.101i | 3.01766i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −95.0000 | −0.785124 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | − 73.9008i | − 0.591206i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −78.8231 | −0.620654 | −0.310327 | − | 0.950630i | \(-0.600439\pi\) | ||||
−0.310327 | + | 0.950630i | \(0.600439\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 82.5792i | 0.630375i | 0.949029 | + | 0.315188i | \(0.102067\pi\) | ||||
−0.949029 | + | 0.315188i | \(0.897933\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 44.7077 | 0.336148 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 214.740i | 1.56745i | 0.621110 | + | 0.783723i | \(0.286682\pi\) | ||||
−0.621110 | + | 0.783723i | \(0.713318\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 60.7846 | 0.437299 | 0.218650 | − | 0.975803i | \(-0.429835\pi\) | ||||
0.218650 | + | 0.975803i | \(0.429835\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 158.783i | − 1.11037i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 43.7077 | 0.301432 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 30.6422i | − 0.205652i | −0.994699 | − | 0.102826i | \(-0.967211\pi\) | ||||
0.994699 | − | 0.102826i | \(-0.0327885\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −32.0000 | −0.211921 | −0.105960 | − | 0.994370i | \(-0.533792\pi\) | ||||
−0.105960 | + | 0.994370i | \(0.533792\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 12.4233i | 0.0801504i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 249.708 | 1.59049 | 0.795247 | − | 0.606285i | \(-0.207341\pi\) | ||||
0.795247 | + | 0.606285i | \(0.207341\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 182.129i | 1.13124i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 12.7846 | 0.0784332 | 0.0392166 | − | 0.999231i | \(-0.487514\pi\) | ||||
0.0392166 | + | 0.999231i | \(0.487514\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 232.431i | − 1.39180i | −0.718136 | − | 0.695902i | \(-0.755005\pi\) | ||||
0.718136 | − | 0.695902i | \(-0.244995\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −52.2769 | −0.309331 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 21.5477i | 0.124553i | 0.998059 | + | 0.0622765i | \(0.0198361\pi\) | ||||
−0.998059 | + | 0.0622765i | \(0.980164\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −279.923 | −1.59956 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 277.741i | 1.55162i | 0.630964 | + | 0.775812i | \(0.282659\pi\) | ||||
−0.630964 | + | 0.775812i | \(0.717341\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 174.277 | 0.962856 | 0.481428 | − | 0.876486i | \(-0.340118\pi\) | ||||
0.481428 | + | 0.876486i | \(0.340118\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | − 35.0481i | − 0.189449i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 425.885 | 2.27746 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | − 152.126i | − 0.796470i | −0.917283 | − | 0.398235i | \(-0.869623\pi\) | ||||
0.917283 | − | 0.398235i | \(-0.130377\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −55.0000 | −0.284974 | −0.142487 | − | 0.989797i | \(-0.545510\pi\) | ||||
−0.142487 | + | 0.989797i | \(0.545510\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 133.298i | − 0.676638i | −0.941031 | − | 0.338319i | \(-0.890142\pi\) | ||||
0.941031 | − | 0.338319i | \(-0.109858\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 208.862 | 1.04956 | 0.524778 | − | 0.851239i | \(-0.324148\pi\) | ||||
0.524778 | + | 0.851239i | \(0.324148\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 348.788i | − 1.71817i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 39.0577 | 0.190525 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − 53.0221i | − 0.253694i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 87.4538 | 0.414473 | 0.207236 | − | 0.978291i | \(-0.433553\pi\) | ||||
0.207236 | + | 0.978291i | \(0.433553\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − 82.5792i | − 0.384089i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 99.1384 | 0.456859 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 313.071i | 1.41661i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −222.592 | −0.998171 | −0.499086 | − | 0.866553i | \(-0.666331\pi\) | ||||
−0.499086 | + | 0.866553i | \(0.666331\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 300.314i | − 1.32297i | −0.749959 | − | 0.661484i | \(-0.769927\pi\) | ||||
0.749959 | − | 0.661484i | \(-0.230073\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 229.942 | 1.00411 | 0.502057 | − | 0.864834i | \(-0.332577\pi\) | ||||
0.502057 | + | 0.864834i | \(0.332577\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 116.246i | 0.498908i | 0.968387 | + | 0.249454i | \(0.0802512\pi\) | ||||
−0.968387 | + | 0.249454i | \(0.919749\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 26.3538 | 0.112144 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 164.386i | 0.687807i | 0.939005 | + | 0.343904i | \(0.111749\pi\) | ||||
−0.939005 | + | 0.343904i | \(0.888251\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −81.3116 | −0.337392 | −0.168696 | − | 0.985668i | \(-0.553956\pi\) | ||||
−0.168696 | + | 0.985668i | \(0.553956\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | − 162.387i | − 0.662804i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 38.9770 | 0.157802 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 396.371i | 1.57917i | 0.613642 | + | 0.789584i | \(0.289704\pi\) | ||||
−0.613642 | + | 0.789584i | \(0.710296\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 216.000 | 0.853755 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 214.963i | − 0.836432i | −0.908348 | − | 0.418216i | \(-0.862655\pi\) | ||||
0.908348 | − | 0.418216i | \(-0.137345\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −279.685 | −1.07986 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 317.893i | 1.20872i | 0.796711 | + | 0.604360i | \(0.206571\pi\) | ||||
−0.796711 | + | 0.604360i | \(0.793429\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 131.296 | 0.495457 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 208.528i | − 0.775199i | −0.921828 | − | 0.387599i | \(-0.873304\pi\) | ||||
0.921828 | − | 0.387599i | \(-0.126696\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −409.885 | −1.51249 | −0.756245 | − | 0.654289i | \(-0.772968\pi\) | ||||
−0.756245 | + | 0.654289i | \(0.772968\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 331.981i | 1.20720i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 497.415 | 1.79572 | 0.897862 | − | 0.440278i | \(-0.145120\pi\) | ||||
0.897862 | + | 0.440278i | \(0.145120\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 215.268i | − 0.766077i | −0.923732 | − | 0.383039i | \(-0.874878\pi\) | ||||
0.923732 | − | 0.383039i | \(-0.125122\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 296.708 | 1.04844 | 0.524218 | − | 0.851584i | \(-0.324358\pi\) | ||||
0.524218 | + | 0.851584i | \(0.324358\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 311.682i | − 1.08600i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −550.711 | −1.90558 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 340.964i | 1.16370i | 0.813296 | + | 0.581850i | \(0.197671\pi\) | ||||
−0.813296 | + | 0.581850i | \(0.802329\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −141.415 | −0.479374 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 158.783i | 0.531048i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −658.985 | −2.18932 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 20.1879i | 0.0661898i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 114.354 | 0.372488 | 0.186244 | − | 0.982504i | \(-0.440368\pi\) | ||||
0.186244 | + | 0.982504i | \(0.440368\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 196.217i | 0.630922i | 0.948939 | + | 0.315461i | \(0.102159\pi\) | ||||
−0.948939 | + | 0.315461i | \(0.897841\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −146.723 | −0.468764 | −0.234382 | − | 0.972145i | \(-0.575307\pi\) | ||||
−0.234382 | + | 0.972145i | \(0.575307\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 48.1403i | 0.151862i | 0.997113 | + | 0.0759311i | \(0.0241929\pi\) | ||||
−0.997113 | + | 0.0759311i | \(0.975807\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −413.654 | −1.29672 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 104.543i | 0.323662i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −244.042 | −0.750899 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | − 210.304i | − 0.639223i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 99.4538 | 0.300465 | 0.150232 | − | 0.988651i | \(-0.451998\pi\) | ||||
0.150232 | + | 0.988651i | \(0.451998\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | − 63.9442i | − 0.190878i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −425.261 | −1.26190 | −0.630952 | − | 0.775822i | \(-0.717335\pi\) | ||||
−0.630952 | + | 0.775822i | \(0.717335\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | − 117.576i | − 0.344796i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −688.631 | −2.00767 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 38.7711i | − 0.111732i | −0.998438 | − | 0.0558662i | \(-0.982208\pi\) | ||||
0.998438 | − | 0.0558662i | \(-0.0177920\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −651.969 | −1.86811 | −0.934053 | − | 0.357134i | \(-0.883754\pi\) | ||||
−0.934053 | + | 0.357134i | \(0.883754\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 1.19656i | 0.00338969i | 0.999999 | + | 0.00169485i | \(0.000539487\pi\) | ||||
−0.999999 | + | 0.00169485i | \(0.999461\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −25.4078 | −0.0715712 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 534.573i | − 1.48906i | −0.667589 | − | 0.744530i | \(-0.732674\pi\) | ||||
0.667589 | − | 0.744530i | \(-0.267326\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −347.985 | −0.963946 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | − 111.171i | − 0.304577i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −264.708 | −0.721274 | −0.360637 | − | 0.932706i | \(-0.617441\pi\) | ||||
−0.360637 | + | 0.932706i | \(0.617441\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | − 1047.75i | − 2.82412i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 71.0155 | 0.190390 | 0.0951950 | − | 0.995459i | \(-0.469653\pi\) | ||||
0.0951950 | + | 0.995459i | \(0.469653\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 304.080i | − 0.806579i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 696.785 | 1.83848 | 0.919241 | − | 0.393696i | \(-0.128804\pi\) | ||||
0.919241 | + | 0.393696i | \(0.128804\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 435.306i | 1.13657i | 0.822832 | + | 0.568284i | \(0.192393\pi\) | ||||
−0.822832 | + | 0.568284i | \(0.807607\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −282.831 | −0.734625 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 53.0439i | 0.136360i | 0.997673 | + | 0.0681799i | \(0.0217192\pi\) | ||||
−0.997673 | + | 0.0681799i | \(0.978281\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −425.885 | −1.08922 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 72.5927i | − 0.183779i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 63.7077 | 0.160473 | 0.0802363 | − | 0.996776i | \(-0.474432\pi\) | ||||
0.0802363 | + | 0.996776i | \(0.474432\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 628.691i | 1.56781i | 0.620882 | + | 0.783904i | \(0.286775\pi\) | ||||
−0.620882 | + | 0.783904i | \(0.713225\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 86.4308 | 0.214468 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 331.698i | 0.814984i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 535.281 | 1.30875 | 0.654377 | − | 0.756168i | \(-0.272931\pi\) | ||||
0.654377 | + | 0.756168i | \(0.272931\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 1128.50i | 2.73244i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −23.7691 | −0.0572750 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 385.330i | 0.919641i | 0.888012 | + | 0.459821i | \(0.152086\pi\) | ||||
−0.888012 | + | 0.459821i | \(0.847914\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −755.319 | −1.79411 | −0.897054 | − | 0.441922i | \(-0.854297\pi\) | ||||
−0.897054 | + | 0.441922i | \(0.854297\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − 654.563i | − 1.54015i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 161.100 | 0.377283 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 107.709i | − 0.249904i | −0.992163 | − | 0.124952i | \(-0.960122\pi\) | ||||
0.992163 | − | 0.124952i | \(-0.0398777\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 655.123 | 1.51299 | 0.756493 | − | 0.654002i | \(-0.226911\pi\) | ||||
0.756493 | + | 0.654002i | \(0.226911\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 53.0221i | 0.121332i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 472.000 | 1.07517 | 0.537585 | − | 0.843209i | \(-0.319337\pi\) | ||||
0.537585 | + | 0.843209i | \(0.319337\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 841.218i | − 1.89891i | −0.313902 | − | 0.949455i | \(-0.601636\pi\) | ||||
0.313902 | − | 0.949455i | \(-0.398364\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −122.642 | −0.275601 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 382.751i | 0.852453i | 0.904616 | + | 0.426227i | \(0.140157\pi\) | ||||
−0.904616 | + | 0.426227i | \(0.859843\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −369.646 | −0.819615 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | − 207.911i | − 0.456948i | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 323.704 | 0.708324 | 0.354162 | − | 0.935184i | \(-0.384766\pi\) | ||||
0.354162 | + | 0.935184i | \(0.384766\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 641.531i | − 1.39161i | −0.718232 | − | 0.695803i | \(-0.755049\pi\) | ||||
0.718232 | − | 0.695803i | \(-0.244951\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −129.492 | −0.279681 | −0.139840 | − | 0.990174i | \(-0.544659\pi\) | ||||
−0.139840 | + | 0.990174i | \(0.544659\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 672.730i | 1.44054i | 0.693696 | + | 0.720268i | \(0.255981\pi\) | ||||
−0.693696 | + | 0.720268i | \(0.744019\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −510.277 | −1.08801 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 781.538i | 1.65230i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −81.4923 | −0.171563 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 125.615i | 0.262244i | 0.991366 | + | 0.131122i | \(0.0418579\pi\) | ||||
−0.991366 | + | 0.131122i | \(0.958142\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −243.834 | −0.506932 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | − 141.530i | − 0.291815i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 448.631 | 0.921213 | 0.460606 | − | 0.887604i | \(-0.347632\pi\) | ||||
0.460606 | + | 0.887604i | \(0.347632\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 452.157i | 0.920890i | 0.887688 | + | 0.460445i | \(0.152310\pi\) | ||||
−0.887688 | + | 0.460445i | \(0.847690\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 815.596 | 1.65435 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 202.755i | 0.407957i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −126.592 | −0.253692 | −0.126846 | − | 0.991922i | \(-0.540485\pi\) | ||||
−0.126846 | + | 0.991922i | \(0.540485\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 296.822i | − 0.590103i | −0.955481 | − | 0.295051i | \(-0.904663\pi\) | ||||
0.955481 | − | 0.295051i | \(-0.0953367\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 137.412 | 0.272102 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 654.846i | − 1.28653i | −0.765642 | − | 0.643267i | \(-0.777578\pi\) | ||||
0.765642 | − | 0.643267i | \(-0.222422\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −887.146 | −1.73610 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 237.142i | − 0.460470i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −249.415 | −0.482428 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | − 690.006i | − 1.32439i | −0.749333 | − | 0.662193i | \(-0.769626\pi\) | ||||
0.749333 | − | 0.662193i | \(-0.230374\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −616.238 | −1.17828 | −0.589138 | − | 0.808032i | \(-0.700533\pi\) | ||||
−0.589138 | + | 0.808032i | \(0.700533\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 231.822i | 0.439890i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 313.000 | 0.591682 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 271.730i | − 0.509813i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −93.1845 | −0.174177 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 1536.85i | 2.85129i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −548.734 | −1.01430 | −0.507148 | − | 0.861859i | \(-0.669300\pi\) | ||||
−0.507148 | + | 0.861859i | \(0.669300\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 145.884i | 0.267678i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 819.769 | 1.49866 | 0.749332 | − | 0.662195i | \(-0.230375\pi\) | ||||
0.749332 | + | 0.662195i | \(0.230375\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 101.541i | − 0.184284i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −579.292 | −1.04754 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 125.808i | − 0.225867i | −0.993603 | − | 0.112934i | \(-0.963975\pi\) | ||||
0.993603 | − | 0.112934i | \(-0.0360247\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −574.515 | −1.02776 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 508.790i | − 0.903713i | −0.892091 | − | 0.451856i | \(-0.850762\pi\) | ||||
0.892091 | − | 0.451856i | \(-0.149238\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −137.585 | −0.243513 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | − 96.8600i | − 0.170229i | −0.996371 | − | 0.0851143i | \(-0.972874\pi\) | ||||
0.996371 | − | 0.0851143i | \(-0.0271255\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 454.200 | 0.795446 | 0.397723 | − | 0.917505i | \(-0.369800\pi\) | ||||
0.397723 | + | 0.917505i | \(0.369800\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − 331.981i | − 0.577359i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −39.1230 | −0.0678041 | −0.0339021 | − | 0.999425i | \(-0.510793\pi\) | ||||
−0.0339021 | + | 0.999425i | \(0.510793\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 189.679i | 0.326469i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −1242.60 | −2.13139 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 419.227i | 0.714186i | 0.934069 | + | 0.357093i | \(0.116232\pi\) | ||||
−0.934069 | + | 0.357093i | \(0.883768\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 28.8616 | 0.0490010 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 329.210i | − 0.555160i | −0.960703 | − | 0.277580i | \(-0.910468\pi\) | ||||
0.960703 | − | 0.277580i | \(-0.0895323\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 557.654 | 0.937233 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 184.239i | − 0.307578i | −0.988104 | − | 0.153789i | \(-0.950852\pi\) | ||||
0.988104 | − | 0.153789i | \(-0.0491476\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 218.415 | 0.363420 | 0.181710 | − | 0.983352i | \(-0.441837\pi\) | ||||
0.181710 | + | 0.983352i | \(0.441837\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 147.527i | 0.243846i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −10.2693 | −0.0169182 | −0.00845909 | − | 0.999964i | \(-0.502693\pi\) | ||||
−0.00845909 | + | 0.999964i | \(0.502693\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | − 183.347i | − 0.300078i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −180.585 | −0.294592 | −0.147296 | − | 0.989092i | \(-0.547057\pi\) | ||||
−0.147296 | + | 0.989092i | \(0.547057\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 906.209i | 1.46873i | 0.678753 | + | 0.734367i | \(0.262521\pi\) | ||||
−0.678753 | + | 0.734367i | \(0.737479\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −761.646 | −1.23045 | −0.615223 | − | 0.788353i | \(-0.710934\pi\) | ||||
−0.615223 | + | 0.788353i | \(0.710934\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 978.690i | 1.57093i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 449.950 | 0.719920 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 654.006i | − 1.03975i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −601.108 | −0.952627 | −0.476313 | − | 0.879276i | \(-0.658027\pi\) | ||||
−0.476313 | + | 0.879276i | \(0.658027\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 122.405i | 0.192765i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −1129.75 | −1.77355 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 577.453i | 0.900863i | 0.892811 | + | 0.450431i | \(0.148730\pi\) | ||||
−0.892811 | + | 0.450431i | \(0.851270\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −130.123 | −0.202369 | −0.101184 | − | 0.994868i | \(-0.532263\pi\) | ||||
−0.101184 | + | 0.994868i | \(0.532263\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 985.467i | − 1.52313i | −0.648087 | − | 0.761567i | \(-0.724430\pi\) | ||||
0.648087 | − | 0.761567i | \(-0.275570\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 1338.37 | 2.06220 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 600.323i | − 0.919330i | −0.888092 | − | 0.459665i | \(-0.847969\pi\) | ||||
0.888092 | − | 0.459665i | \(-0.152031\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 128.238 | 0.195784 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 15.5889i | 0.0236554i | 0.999930 | + | 0.0118277i | \(0.00376496\pi\) | ||||
−0.999930 | + | 0.0118277i | \(0.996235\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 407.831 | 0.616990 | 0.308495 | − | 0.951226i | \(-0.400175\pi\) | ||||
0.308495 | + | 0.951226i | \(0.400175\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | − 69.4272i | − 0.104402i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 413.654 | 0.620170 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 191.060i | − 0.284739i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −474.569 | −0.705155 | −0.352577 | − | 0.935783i | \(-0.614695\pi\) | ||||
−0.352577 | + | 0.935783i | \(0.614695\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 282.147i | 0.416760i | 0.978048 | + | 0.208380i | \(0.0668191\pi\) | ||||
−0.978048 | + | 0.208380i | \(0.933181\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −1129.42 | −1.66335 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 1085.46i | − 1.58926i | −0.607095 | − | 0.794629i | \(-0.707665\pi\) | ||||
0.607095 | − | 0.794629i | \(-0.292335\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 333.473 | 0.486822 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | − 913.446i | − 1.32576i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 1007.78 | 1.45843 | 0.729216 | − | 0.684283i | \(-0.239885\pi\) | ||||
0.729216 | + | 0.684283i | \(0.239885\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 94.3933i | − 0.135818i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 728.827 | 1.04566 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 216.731i | 0.309174i | 0.987979 | + | 0.154587i | \(0.0494047\pi\) | ||||
−0.987979 | + | 0.154587i | \(0.950595\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −81.4229 | −0.115822 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 1096.55i | − 1.55099i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 994.496 | 1.40267 | 0.701337 | − | 0.712830i | \(-0.252587\pi\) | ||||
0.701337 | + | 0.712830i | \(0.252587\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 117.576i | 0.164903i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −246.577 | −0.344863 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 340.912i | 0.474148i | 0.971492 | + | 0.237074i | \(0.0761884\pi\) | ||||
−0.971492 | + | 0.237074i | \(0.923812\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −1892.40 | −2.62469 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 635.765i | 0.876917i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 971.777 | 1.33669 | 0.668347 | − | 0.743850i | \(-0.267002\pi\) | ||||
0.668347 | + | 0.743850i | \(0.267002\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 1540.95i | − 2.10800i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 229.169 | 0.312646 | 0.156323 | − | 0.987706i | \(-0.450036\pi\) | ||||
0.156323 | + | 0.987706i | \(0.450036\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 605.175i | 0.821132i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 629.892 | 0.852357 | 0.426179 | − | 0.904639i | \(-0.359859\pi\) | ||||
0.426179 | + | 0.904639i | \(0.359859\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 188.014i | 0.253047i | 0.991964 | + | 0.126524i | \(0.0403820\pi\) | ||||
−0.991964 | + | 0.126524i | \(0.959618\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −47.5847 | −0.0638721 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 743.615i | 0.992810i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 1386.67 | 1.84643 | 0.923215 | − | 0.384283i | \(-0.125551\pi\) | ||||
0.923215 | + | 0.384283i | \(0.125551\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 49.6933i | 0.0658189i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 1222.12 | 1.61443 | 0.807215 | − | 0.590258i | \(-0.200974\pi\) | ||||
0.807215 | + | 0.590258i | \(0.200974\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 565.683i | − 0.743341i | −0.928365 | − | 0.371671i | \(-0.878785\pi\) | ||||
0.928365 | − | 0.371671i | \(-0.121215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 1164.16 | 1.52577 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 983.847i | 1.28272i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −598.815 | −0.778693 | −0.389347 | − | 0.921091i | \(-0.627299\pi\) | ||||
−0.389347 | + | 0.921091i | \(0.627299\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 446.970i | 0.578228i | 0.957295 | + | 0.289114i | \(0.0933607\pi\) | ||||
−0.957295 | + | 0.289114i | \(0.906639\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −180.708 | −0.233171 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 90.7380i | − 0.116480i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 240.462 | 0.307890 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 387.775i | − 0.493980i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 955.300 | 1.21385 | 0.606925 | − | 0.794759i | \(-0.292403\pi\) | ||||
0.606925 | + | 0.794759i | \(0.292403\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 1097.93i | 1.38803i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 140.450 | 0.177112 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 221.866i | 0.278376i | 0.990266 | + | 0.139188i | \(0.0444492\pi\) | ||||
−0.990266 | + | 0.139188i | \(0.955551\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 491.769 | 0.615481 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 1052.13i | 1.31025i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 282.831 | 0.351342 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 1180.17i | 1.45881i | 0.684084 | + | 0.729403i | \(0.260202\pi\) | ||||
−0.684084 | + | 0.729403i | \(0.739798\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 627.307 | 0.773499 | 0.386749 | − | 0.922185i | \(-0.373598\pi\) | ||||
0.386749 | + | 0.922185i | \(0.373598\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | − 19.8534i | − 0.0243600i | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −191.846 | −0.234818 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 390.880i | 0.476103i | 0.971253 | + | 0.238051i | \(0.0765087\pi\) | ||||
−0.971253 | + | 0.238051i | \(0.923491\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −326.200 | −0.396355 | −0.198177 | − | 0.980166i | \(-0.563502\pi\) | ||||
−0.198177 | + | 0.980166i | \(0.563502\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 1103.70i | 1.33458i | 0.744799 | + | 0.667289i | \(0.232545\pi\) | ||||
−0.744799 | + | 0.667289i | \(0.767455\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −441.569 | −0.532653 | −0.266326 | − | 0.963883i | \(-0.585810\pi\) | ||||
−0.266326 | + | 0.963883i | \(0.585810\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 3030.18i | − 3.63768i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −360.946 | −0.432271 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 503.960i | − 0.600668i | −0.953834 | − | 0.300334i | \(-0.902902\pi\) | ||||
0.953834 | − | 0.300334i | \(-0.0970981\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 48.8269 | 0.0580581 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 81.1815i | 0.0960728i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 1177.27 | 1.38993 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 331.698i | − 0.389775i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 944.831 | 1.10766 | 0.553828 | − | 0.832631i | \(-0.313166\pi\) | ||||
0.553828 | + | 0.832631i | \(0.313166\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 741.377i | 0.865084i | 0.901614 | + | 0.432542i | \(0.142383\pi\) | ||||
−0.901614 | + | 0.432542i | \(0.857617\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 1361.26 | 1.58470 | 0.792352 | − | 0.610064i | \(-0.208856\pi\) | ||||
0.792352 | + | 0.610064i | \(0.208856\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 805.003i | − 0.932796i | −0.884575 | − | 0.466398i | \(-0.845551\pi\) | ||||
0.884575 | − | 0.466398i | \(-0.154449\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 33.4617 | 0.0386841 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 687.025i | 0.790593i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −444.869 | −0.510757 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 915.801i | 1.04663i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 42.6922 | 0.0486798 | 0.0243399 | − | 0.999704i | \(-0.492252\pi\) | ||||
0.0243399 | + | 0.999704i | \(0.492252\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 264.567i | 0.300303i | 0.988663 | + | 0.150151i | \(0.0479761\pi\) | ||||
−0.988663 | + | 0.150151i | \(0.952024\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 393.338 | 0.445457 | 0.222728 | − | 0.974881i | \(-0.428504\pi\) | ||||
0.222728 | + | 0.974881i | \(0.428504\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 1548.05i | 1.74527i | 0.488375 | + | 0.872634i | \(0.337590\pi\) | ||||
−0.488375 | + | 0.872634i | \(0.662410\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 976.800 | 1.09876 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 61.2246i | − 0.0685606i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 431.307 | 0.481908 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 225.165i | − 0.250461i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 2450.02 | 2.71922 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − 270.637i | − 0.299046i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −1377.49 | −1.51873 | −0.759367 | − | 0.650662i | \(-0.774491\pi\) | ||||
−0.759367 | + | 0.650662i | \(0.774491\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 1406.08i | 1.54344i | 0.635961 | + | 0.771721i | \(0.280604\pi\) | ||||
−0.635961 | + | 0.771721i | \(0.719396\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 224.954 | 0.246389 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 1023.35i | − 1.11597i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −479.992 | −0.522299 | −0.261149 | − | 0.965298i | \(-0.584101\pi\) | ||||
−0.261149 | + | 0.965298i | \(0.584101\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 176.765i | 0.191512i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 509.804 | 0.551139 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 678.733i | − 0.730606i | −0.930889 | − | 0.365303i | \(-0.880965\pi\) | ||||
0.930889 | − | 0.365303i | \(-0.119035\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −377.254 | −0.405214 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | − 661.362i | − 0.707339i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −666.600 | −0.711420 | −0.355710 | − | 0.934596i | \(-0.615761\pi\) | ||||
−0.355710 | + | 0.934596i | \(0.615761\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 1197.96i | − 1.27307i | −0.771249 | − | 0.636533i | \(-0.780368\pi\) | ||||
0.771249 | − | 0.636533i | \(-0.219632\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 369.646 | 0.391990 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 454.713i | 0.480162i | 0.970753 | + | 0.240081i | \(0.0771740\pi\) | ||||
−0.970753 | + | 0.240081i | \(0.922826\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −773.431 | −0.814996 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 1060.16i | − 1.11245i | −0.831033 | − | 0.556224i | \(-0.812250\pi\) | ||||
0.831033 | − | 0.556224i | \(-0.187750\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −236.238 | −0.247370 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | − 2661.13i | − 2.77490i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −897.000 | −0.933403 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 85.4103i | 0.0885081i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 1655.31 | 1.71180 | 0.855902 | − | 0.517138i | \(-0.173002\pi\) | ||||
0.855902 | + | 0.517138i | \(0.173002\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | − 797.780i | − 0.821606i | −0.911724 | − | 0.410803i | \(-0.865248\pi\) | ||||
0.911724 | − | 0.410803i | \(-0.134752\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −753.261 | −0.774164 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 312.432i | 0.319787i | 0.987134 | + | 0.159894i | \(0.0511152\pi\) | ||||
−0.987134 | + | 0.159894i | \(0.948885\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 1160.70 | 1.18560 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 370.143i | 0.376544i | 0.982117 | + | 0.188272i | \(0.0602887\pi\) | ||||
−0.982117 | + | 0.188272i | \(0.939711\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −207.000 | −0.210152 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | − 781.538i | − 0.790230i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 1324.48 | 1.33651 | 0.668256 | − | 0.743931i | \(-0.267041\pi\) | ||||
0.668256 | + | 0.743931i | \(0.267041\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 324.344i | − 0.325974i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 879.246 | 0.881892 | 0.440946 | − | 0.897534i | \(-0.354643\pi\) | ||||
0.440946 | + | 0.897534i | \(0.354643\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1296.3.e.d.161.2 | 4 | ||
3.2 | odd | 2 | inner | 1296.3.e.d.161.3 | 4 | ||
4.3 | odd | 2 | 162.3.b.b.161.1 | ✓ | 4 | ||
9.2 | odd | 6 | 1296.3.q.o.1025.2 | 8 | |||
9.4 | even | 3 | 1296.3.q.o.593.2 | 8 | |||
9.5 | odd | 6 | 1296.3.q.o.593.3 | 8 | |||
9.7 | even | 3 | 1296.3.q.o.1025.3 | 8 | |||
12.11 | even | 2 | 162.3.b.b.161.4 | yes | 4 | ||
36.7 | odd | 6 | 162.3.d.c.53.2 | 8 | |||
36.11 | even | 6 | 162.3.d.c.53.3 | 8 | |||
36.23 | even | 6 | 162.3.d.c.107.2 | 8 | |||
36.31 | odd | 6 | 162.3.d.c.107.3 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
162.3.b.b.161.1 | ✓ | 4 | 4.3 | odd | 2 | ||
162.3.b.b.161.4 | yes | 4 | 12.11 | even | 2 | ||
162.3.d.c.53.2 | 8 | 36.7 | odd | 6 | |||
162.3.d.c.53.3 | 8 | 36.11 | even | 6 | |||
162.3.d.c.107.2 | 8 | 36.23 | even | 6 | |||
162.3.d.c.107.3 | 8 | 36.31 | odd | 6 | |||
1296.3.e.d.161.2 | 4 | 1.1 | even | 1 | trivial | ||
1296.3.e.d.161.3 | 4 | 3.2 | odd | 2 | inner | ||
1296.3.q.o.593.2 | 8 | 9.4 | even | 3 | |||
1296.3.q.o.593.3 | 8 | 9.5 | odd | 6 | |||
1296.3.q.o.1025.2 | 8 | 9.2 | odd | 6 | |||
1296.3.q.o.1025.3 | 8 | 9.7 | even | 3 |