Properties

Label 1296.3.e.b
Level $1296$
Weight $3$
Character orbit 1296.e
Analytic conductor $35.313$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,3,Mod(161,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1296.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-12,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.3134422611\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 648)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + (\beta_{2} - 3) q^{7} + ( - \beta_{3} - 5 \beta_1) q^{11} + ( - 2 \beta_{2} - 5) q^{13} + (6 \beta_{3} + 5 \beta_1) q^{17} + ( - 7 \beta_{2} + 7) q^{19} + ( - 11 \beta_{3} + 3 \beta_1) q^{23}+ \cdots + (22 \beta_{2} + 32) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{7} - 20 q^{13} + 28 q^{19} + 92 q^{25} + 64 q^{31} - 72 q^{37} - 172 q^{43} - 148 q^{49} + 44 q^{55} + 160 q^{61} + 172 q^{67} - 32 q^{73} - 196 q^{79} - 64 q^{85} + 36 q^{91} + 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
1.93185i
0.517638i
0.517638i
1.93185i
0 0 0 1.93185i 0 −4.73205 0 0 0
161.2 0 0 0 0.517638i 0 −1.26795 0 0 0
161.3 0 0 0 0.517638i 0 −1.26795 0 0 0
161.4 0 0 0 1.93185i 0 −4.73205 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.3.e.b 4
3.b odd 2 1 inner 1296.3.e.b 4
4.b odd 2 1 648.3.e.a 4
9.c even 3 2 1296.3.q.p 8
9.d odd 6 2 1296.3.q.p 8
12.b even 2 1 648.3.e.a 4
36.f odd 6 2 648.3.m.e 8
36.h even 6 2 648.3.m.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
648.3.e.a 4 4.b odd 2 1
648.3.e.a 4 12.b even 2 1
648.3.m.e 8 36.f odd 6 2
648.3.m.e 8 36.h even 6 2
1296.3.e.b 4 1.a even 1 1 trivial
1296.3.e.b 4 3.b odd 2 1 inner
1296.3.q.p 8 9.c even 3 2
1296.3.q.p 8 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1296, [\chi])\):

\( T_{5}^{4} + 4T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 6T_{7} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 124T^{2} + 2116 \) Copy content Toggle raw display
$13$ \( (T^{2} + 10 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 364 T^{2} + 32761 \) Copy content Toggle raw display
$19$ \( (T^{2} - 14 T - 98)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 388T^{2} + 4 \) Copy content Toggle raw display
$29$ \( T^{4} + 156T^{2} + 9 \) Copy content Toggle raw display
$31$ \( (T^{2} - 32 T - 1196)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 36 T - 2559)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 5772 T^{2} + 338724 \) Copy content Toggle raw display
$43$ \( (T^{2} + 86 T + 1342)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 6384 T^{2} + 9960336 \) Copy content Toggle raw display
$53$ \( T^{4} + 8524 T^{2} + 10484644 \) Copy content Toggle raw display
$59$ \( T^{4} + 6544 T^{2} + 327184 \) Copy content Toggle raw display
$61$ \( (T^{2} - 80 T + 733)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 86 T - 1034)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 11332 T^{2} + 15507844 \) Copy content Toggle raw display
$73$ \( (T^{2} + 16 T - 6011)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 98 T - 2642)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 23824 T^{2} + 53114944 \) Copy content Toggle raw display
$89$ \( T^{4} + 19764 T^{2} + 14493249 \) Copy content Toggle raw display
$97$ \( (T^{2} - 64 T - 428)^{2} \) Copy content Toggle raw display
show more
show less