Defining parameters
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.y (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(432\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1296, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 912 | 392 | 520 |
Cusp forms | 816 | 376 | 440 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1296, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1296, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1296, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)