Defining parameters
Level: | \( N \) | \(=\) | \( 1296 = 2^{4} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1296.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1296))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 26 | 226 |
Cusp forms | 181 | 22 | 159 |
Eisenstein series | 71 | 4 | 67 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(60\) | \(5\) | \(55\) | \(43\) | \(5\) | \(38\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(-\) | \(-\) | \(66\) | \(7\) | \(59\) | \(48\) | \(7\) | \(41\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(66\) | \(8\) | \(58\) | \(48\) | \(6\) | \(42\) | \(18\) | \(2\) | \(16\) | |||
\(-\) | \(-\) | \(+\) | \(60\) | \(6\) | \(54\) | \(42\) | \(4\) | \(38\) | \(18\) | \(2\) | \(16\) | |||
Plus space | \(+\) | \(120\) | \(11\) | \(109\) | \(85\) | \(9\) | \(76\) | \(35\) | \(2\) | \(33\) | ||||
Minus space | \(-\) | \(132\) | \(15\) | \(117\) | \(96\) | \(13\) | \(83\) | \(36\) | \(2\) | \(34\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1296))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1296))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1296)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(648))\)\(^{\oplus 2}\)