Properties

Label 1296.1.q
Level $1296$
Weight $1$
Character orbit 1296.q
Rep. character $\chi_{1296}(593,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1296.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1296, [\chi])\).

Total New Old
Modular forms 80 4 76
Cusp forms 8 2 6
Eisenstein series 72 2 70

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{7} + q^{13} + 2 q^{19} - q^{25} + 2 q^{31} - 2 q^{37} + 2 q^{43} + q^{61} - q^{67} - 2 q^{73} - q^{79} - 2 q^{91} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1296.1.q.a 1296.q 9.d $2$ $0.647$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 108.1.c.a \(0\) \(0\) \(0\) \(-1\) \(q-\zeta_{6}q^{7}-\zeta_{6}^{2}q^{13}+q^{19}-\zeta_{6}q^{25}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1296, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1296, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 3}\)