# Properties

 Label 1296.1.o.c Level $1296$ Weight $1$ Character orbit 1296.o Analytic conductor $0.647$ Analytic rank $0$ Dimension $2$ Projective image $D_{6}$ CM discriminant -3 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1296 = 2^{4} \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1296.o (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.646788256372$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 432) Projective image: $$D_{6}$$ Projective field: Galois closure of 6.0.186624.1

## $q$-expansion

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + ( 1 - \zeta_{6}^{2} ) q^{7} +O(q^{10})$$ $$q + ( 1 - \zeta_{6}^{2} ) q^{7} + \zeta_{6}^{2} q^{13} + ( -\zeta_{6} - \zeta_{6}^{2} ) q^{19} + \zeta_{6} q^{25} - q^{37} + ( 1 - \zeta_{6} - \zeta_{6}^{2} ) q^{49} + \zeta_{6} q^{61} + ( 1 + \zeta_{6} ) q^{67} + q^{73} + ( -1 + \zeta_{6}^{2} ) q^{79} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{91} -\zeta_{6} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 3 q^{7} + O(q^{10})$$ $$2 q + 3 q^{7} - q^{13} + q^{25} - 2 q^{37} + 2 q^{49} + q^{61} + 3 q^{67} + 2 q^{73} - 3 q^{79} - q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1217$$ $$\chi(n)$$ $$1$$ $$-1$$ $$\zeta_{6}^{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
271.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 0 0 1.50000 0.866025i 0 0 0
703.1 0 0 0 0 0 1.50000 + 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
36.f odd 6 1 inner
36.h even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.1.o.c 2
3.b odd 2 1 CM 1296.1.o.c 2
4.b odd 2 1 1296.1.o.a 2
9.c even 3 1 432.1.g.a 2
9.c even 3 1 1296.1.o.a 2
9.d odd 6 1 432.1.g.a 2
9.d odd 6 1 1296.1.o.a 2
12.b even 2 1 1296.1.o.a 2
36.f odd 6 1 432.1.g.a 2
36.f odd 6 1 inner 1296.1.o.c 2
36.h even 6 1 432.1.g.a 2
36.h even 6 1 inner 1296.1.o.c 2
72.j odd 6 1 1728.1.g.a 2
72.l even 6 1 1728.1.g.a 2
72.n even 6 1 1728.1.g.a 2
72.p odd 6 1 1728.1.g.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
432.1.g.a 2 9.c even 3 1
432.1.g.a 2 9.d odd 6 1
432.1.g.a 2 36.f odd 6 1
432.1.g.a 2 36.h even 6 1
1296.1.o.a 2 4.b odd 2 1
1296.1.o.a 2 9.c even 3 1
1296.1.o.a 2 9.d odd 6 1
1296.1.o.a 2 12.b even 2 1
1296.1.o.c 2 1.a even 1 1 trivial
1296.1.o.c 2 3.b odd 2 1 CM
1296.1.o.c 2 36.f odd 6 1 inner
1296.1.o.c 2 36.h even 6 1 inner
1728.1.g.a 2 72.j odd 6 1
1728.1.g.a 2 72.l even 6 1
1728.1.g.a 2 72.n even 6 1
1728.1.g.a 2 72.p odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{1}^{\mathrm{new}}(1296, [\chi])$$:

 $$T_{5}$$ $$T_{7}^{2} - 3 T_{7} + 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$3 - 3 T + T^{2}$$
$11$ $$T^{2}$$
$13$ $$1 + T + T^{2}$$
$17$ $$T^{2}$$
$19$ $$3 + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2}$$
$37$ $$( 1 + T )^{2}$$
$41$ $$T^{2}$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$1 - T + T^{2}$$
$67$ $$3 - 3 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$( -1 + T )^{2}$$
$79$ $$3 + 3 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$1 + T + T^{2}$$