Properties

Label 1288.1.bi.c
Level $1288$
Weight $1$
Character orbit 1288.bi
Analytic conductor $0.643$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1288,1,Mod(13,1288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1288, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 11, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1288.13");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1288 = 2^{3} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1288.bi (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.642795736271\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{22}^{9} q^{2} - \zeta_{22}^{7} q^{4} + \zeta_{22} q^{7} + \zeta_{22}^{5} q^{8} - \zeta_{22}^{4} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{22}^{9} q^{2} - \zeta_{22}^{7} q^{4} + \zeta_{22} q^{7} + \zeta_{22}^{5} q^{8} - \zeta_{22}^{4} q^{9} + ( - \zeta_{22}^{10} + \zeta_{22}^{6}) q^{11} + \zeta_{22}^{10} q^{14} - \zeta_{22}^{3} q^{16} + \zeta_{22}^{2} q^{18} + (\zeta_{22}^{8} - \zeta_{22}^{4}) q^{22} - \zeta_{22}^{7} q^{23} + \zeta_{22}^{3} q^{25} - \zeta_{22}^{8} q^{28} + (\zeta_{22}^{8} - \zeta_{22}^{2}) q^{29} + \zeta_{22} q^{32} - q^{36} + ( - \zeta_{22}^{5} + \zeta_{22}^{3}) q^{37} + ( - \zeta_{22}^{9} - \zeta_{22}^{6}) q^{43} + ( - \zeta_{22}^{6} + \zeta_{22}^{2}) q^{44} + \zeta_{22}^{5} q^{46} + \zeta_{22}^{2} q^{49} - \zeta_{22} q^{50} + (\zeta_{22}^{9} + \zeta_{22}^{4}) q^{53} + \zeta_{22}^{6} q^{56} + ( - \zeta_{22}^{6} + 1) q^{58} - \zeta_{22}^{5} q^{63} + \zeta_{22}^{10} q^{64} + ( - \zeta_{22}^{9} - \zeta_{22}^{8}) q^{67} + (\zeta_{22}^{5} + \zeta_{22}) q^{71} - \zeta_{22}^{9} q^{72} + (\zeta_{22}^{3} - \zeta_{22}) q^{74} + (\zeta_{22}^{7} + 1) q^{77} + (\zeta_{22}^{7} - \zeta_{22}^{2}) q^{79} + \zeta_{22}^{8} q^{81} + (\zeta_{22}^{7} + \zeta_{22}^{4}) q^{86} + (\zeta_{22}^{4} - 1) q^{88} - \zeta_{22}^{3} q^{92} - q^{98} + ( - \zeta_{22}^{10} - \zeta_{22}^{3}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} - q^{4} + q^{7} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q + q^{2} - q^{4} + q^{7} + q^{8} + q^{9} - q^{14} - q^{16} - q^{18} - q^{23} + q^{25} + q^{28} + q^{32} - 10 q^{36} + q^{46} - q^{49} - q^{50} - q^{56} + 11 q^{58} - q^{63} - q^{64} + 2 q^{71} - q^{72} + 11 q^{77} + 2 q^{79} - q^{81} - 11 q^{88} - q^{92} - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1288\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(645\) \(967\)
\(\chi(n)\) \(-1\) \(-\zeta_{22}^{3}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
0.959493 + 0.281733i
0.142315 + 0.989821i
−0.841254 0.540641i
−0.415415 0.909632i
0.654861 0.755750i
0.654861 + 0.755750i
−0.415415 + 0.909632i
0.142315 0.989821i
0.959493 0.281733i
−0.841254 + 0.540641i
−0.841254 + 0.540641i 0 0.415415 0.909632i 0 0 0.959493 + 0.281733i 0.142315 + 0.989821i −0.415415 0.909632i 0
349.1 0.959493 + 0.281733i 0 0.841254 + 0.540641i 0 0 0.142315 + 0.989821i 0.654861 + 0.755750i −0.841254 + 0.540641i 0
629.1 −0.415415 + 0.909632i 0 −0.654861 0.755750i 0 0 −0.841254 0.540641i 0.959493 0.281733i 0.654861 0.755750i 0
685.1 0.654861 + 0.755750i 0 −0.142315 + 0.989821i 0 0 −0.415415 0.909632i −0.841254 + 0.540641i 0.142315 + 0.989821i 0
853.1 0.142315 0.989821i 0 −0.959493 0.281733i 0 0 0.654861 0.755750i −0.415415 + 0.909632i 0.959493 0.281733i 0
909.1 0.142315 + 0.989821i 0 −0.959493 + 0.281733i 0 0 0.654861 + 0.755750i −0.415415 0.909632i 0.959493 + 0.281733i 0
1021.1 0.654861 0.755750i 0 −0.142315 0.989821i 0 0 −0.415415 + 0.909632i −0.841254 0.540641i 0.142315 0.989821i 0
1133.1 0.959493 0.281733i 0 0.841254 0.540641i 0 0 0.142315 0.989821i 0.654861 0.755750i −0.841254 0.540641i 0
1189.1 −0.841254 0.540641i 0 0.415415 + 0.909632i 0 0 0.959493 0.281733i 0.142315 0.989821i −0.415415 + 0.909632i 0
1245.1 −0.415415 0.909632i 0 −0.654861 + 0.755750i 0 0 −0.841254 + 0.540641i 0.959493 + 0.281733i 0.654861 + 0.755750i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
184.p even 22 1 inner
1288.bi odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1288.1.bi.c 10
7.b odd 2 1 CM 1288.1.bi.c 10
8.b even 2 1 1288.1.bi.d yes 10
23.c even 11 1 1288.1.bi.d yes 10
56.h odd 2 1 1288.1.bi.d yes 10
161.l odd 22 1 1288.1.bi.d yes 10
184.p even 22 1 inner 1288.1.bi.c 10
1288.bi odd 22 1 inner 1288.1.bi.c 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1288.1.bi.c 10 1.a even 1 1 trivial
1288.1.bi.c 10 7.b odd 2 1 CM
1288.1.bi.c 10 184.p even 22 1 inner
1288.1.bi.c 10 1288.bi odd 22 1 inner
1288.1.bi.d yes 10 8.b even 2 1
1288.1.bi.d yes 10 23.c even 11 1
1288.1.bi.d yes 10 56.h odd 2 1
1288.1.bi.d yes 10 161.l odd 22 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1288, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{11}^{10} + 11T_{11}^{7} + 33T_{11}^{4} - 11T_{11}^{3} + 22T_{11} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{10} + 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} \) Copy content Toggle raw display
$19$ \( T^{10} \) Copy content Toggle raw display
$23$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{10} + 22 T^{5} + \cdots + 11 \) Copy content Toggle raw display
$31$ \( T^{10} \) Copy content Toggle raw display
$37$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} + 11 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$47$ \( T^{10} \) Copy content Toggle raw display
$53$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$59$ \( T^{10} \) Copy content Toggle raw display
$61$ \( T^{10} \) Copy content Toggle raw display
$67$ \( T^{10} + 11 T^{6} + \cdots + 11 \) Copy content Toggle raw display
$71$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{10} \) Copy content Toggle raw display
$79$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{10} \) Copy content Toggle raw display
$89$ \( T^{10} \) Copy content Toggle raw display
$97$ \( T^{10} \) Copy content Toggle raw display
show more
show less