Properties

Label 1280.4.d.d
Level $1280$
Weight $4$
Character orbit 1280.d
Analytic conductor $75.522$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(75.5224448073\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{3} - 5 i q^{5} - 16 q^{7} + 11 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 4 i q^{3} - 5 i q^{5} - 16 q^{7} + 11 q^{9} - 36 i q^{11} - 42 i q^{13} + 20 q^{15} - 110 q^{17} - 116 i q^{19} - 64 i q^{21} - 16 q^{23} - 25 q^{25} + 152 i q^{27} + 198 i q^{29} + 240 q^{31} + 144 q^{33} + 80 i q^{35} + 258 i q^{37} + 168 q^{39} - 442 q^{41} + 292 i q^{43} - 55 i q^{45} + 392 q^{47} - 87 q^{49} - 440 i q^{51} - 142 i q^{53} - 180 q^{55} + 464 q^{57} + 348 i q^{59} - 570 i q^{61} - 176 q^{63} - 210 q^{65} + 692 i q^{67} - 64 i q^{69} - 168 q^{71} + 134 q^{73} - 100 i q^{75} + 576 i q^{77} + 784 q^{79} - 311 q^{81} + 564 i q^{83} + 550 i q^{85} - 792 q^{87} - 1034 q^{89} + 672 i q^{91} + 960 i q^{93} - 580 q^{95} - 382 q^{97} - 396 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{7} + 22 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{7} + 22 q^{9} + 40 q^{15} - 220 q^{17} - 32 q^{23} - 50 q^{25} + 480 q^{31} + 288 q^{33} + 336 q^{39} - 884 q^{41} + 784 q^{47} - 174 q^{49} - 360 q^{55} + 928 q^{57} - 352 q^{63} - 420 q^{65} - 336 q^{71} + 268 q^{73} + 1568 q^{79} - 622 q^{81} - 1584 q^{87} - 2068 q^{89} - 1160 q^{95} - 764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
641.1
1.00000i
1.00000i
0 4.00000i 0 5.00000i 0 −16.0000 0 11.0000 0
641.2 0 4.00000i 0 5.00000i 0 −16.0000 0 11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.4.d.d 2
4.b odd 2 1 1280.4.d.m 2
8.b even 2 1 inner 1280.4.d.d 2
8.d odd 2 1 1280.4.d.m 2
16.e even 4 1 40.4.a.b 1
16.e even 4 1 320.4.a.e 1
16.f odd 4 1 80.4.a.b 1
16.f odd 4 1 320.4.a.j 1
48.i odd 4 1 360.4.a.f 1
48.k even 4 1 720.4.a.d 1
80.i odd 4 1 200.4.c.f 2
80.j even 4 1 400.4.c.h 2
80.k odd 4 1 400.4.a.p 1
80.k odd 4 1 1600.4.a.q 1
80.q even 4 1 200.4.a.d 1
80.q even 4 1 1600.4.a.bk 1
80.s even 4 1 400.4.c.h 2
80.t odd 4 1 200.4.c.f 2
112.l odd 4 1 1960.4.a.e 1
240.bb even 4 1 1800.4.f.d 2
240.bf even 4 1 1800.4.f.d 2
240.bm odd 4 1 1800.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.a.b 1 16.e even 4 1
80.4.a.b 1 16.f odd 4 1
200.4.a.d 1 80.q even 4 1
200.4.c.f 2 80.i odd 4 1
200.4.c.f 2 80.t odd 4 1
320.4.a.e 1 16.e even 4 1
320.4.a.j 1 16.f odd 4 1
360.4.a.f 1 48.i odd 4 1
400.4.a.p 1 80.k odd 4 1
400.4.c.h 2 80.j even 4 1
400.4.c.h 2 80.s even 4 1
720.4.a.d 1 48.k even 4 1
1280.4.d.d 2 1.a even 1 1 trivial
1280.4.d.d 2 8.b even 2 1 inner
1280.4.d.m 2 4.b odd 2 1
1280.4.d.m 2 8.d odd 2 1
1600.4.a.q 1 80.k odd 4 1
1600.4.a.bk 1 80.q even 4 1
1800.4.a.h 1 240.bm odd 4 1
1800.4.f.d 2 240.bb even 4 1
1800.4.f.d 2 240.bf even 4 1
1960.4.a.e 1 112.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1280, [\chi])\):

\( T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{7} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 1296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 16 \) Copy content Toggle raw display
$5$ \( T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T + 16)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1296 \) Copy content Toggle raw display
$13$ \( T^{2} + 1764 \) Copy content Toggle raw display
$17$ \( (T + 110)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 13456 \) Copy content Toggle raw display
$23$ \( (T + 16)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 39204 \) Copy content Toggle raw display
$31$ \( (T - 240)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 66564 \) Copy content Toggle raw display
$41$ \( (T + 442)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 85264 \) Copy content Toggle raw display
$47$ \( (T - 392)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 20164 \) Copy content Toggle raw display
$59$ \( T^{2} + 121104 \) Copy content Toggle raw display
$61$ \( T^{2} + 324900 \) Copy content Toggle raw display
$67$ \( T^{2} + 478864 \) Copy content Toggle raw display
$71$ \( (T + 168)^{2} \) Copy content Toggle raw display
$73$ \( (T - 134)^{2} \) Copy content Toggle raw display
$79$ \( (T - 784)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 318096 \) Copy content Toggle raw display
$89$ \( (T + 1034)^{2} \) Copy content Toggle raw display
$97$ \( (T + 382)^{2} \) Copy content Toggle raw display
show more
show less