Defining parameters
| Level: | \( N \) | \(=\) | \( 1280 = 2^{8} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1280.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 30 \) | ||
| Sturm bound: | \(768\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1280))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 600 | 96 | 504 |
| Cusp forms | 552 | 96 | 456 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(156\) | \(26\) | \(130\) | \(144\) | \(26\) | \(118\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(148\) | \(22\) | \(126\) | \(136\) | \(22\) | \(114\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(144\) | \(22\) | \(122\) | \(132\) | \(22\) | \(110\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(152\) | \(26\) | \(126\) | \(140\) | \(26\) | \(114\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(308\) | \(52\) | \(256\) | \(284\) | \(52\) | \(232\) | \(24\) | \(0\) | \(24\) | ||||
| Minus space | \(-\) | \(292\) | \(44\) | \(248\) | \(268\) | \(44\) | \(224\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1280))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1280))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1280)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(640))\)\(^{\oplus 2}\)