Properties

Label 1280.4.a
Level $1280$
Weight $4$
Character orbit 1280.a
Rep. character $\chi_{1280}(1,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $30$
Sturm bound $768$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 30 \)
Sturm bound: \(768\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1280))\).

Total New Old
Modular forms 600 96 504
Cusp forms 552 96 456
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(156\)\(26\)\(130\)\(144\)\(26\)\(118\)\(12\)\(0\)\(12\)
\(+\)\(-\)\(-\)\(148\)\(22\)\(126\)\(136\)\(22\)\(114\)\(12\)\(0\)\(12\)
\(-\)\(+\)\(-\)\(144\)\(22\)\(122\)\(132\)\(22\)\(110\)\(12\)\(0\)\(12\)
\(-\)\(-\)\(+\)\(152\)\(26\)\(126\)\(140\)\(26\)\(114\)\(12\)\(0\)\(12\)
Plus space\(+\)\(308\)\(52\)\(256\)\(284\)\(52\)\(232\)\(24\)\(0\)\(24\)
Minus space\(-\)\(292\)\(44\)\(248\)\(268\)\(44\)\(224\)\(24\)\(0\)\(24\)

Trace form

\( 96 q + 864 q^{9} + 2400 q^{25} + 1824 q^{49} - 1344 q^{57} + 1728 q^{73} + 7776 q^{81} + 6336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1280))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
1280.4.a.a 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{19}) \) None 320.4.d.a \(0\) \(-6\) \(-10\) \(10\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3+\beta )q^{3}-5q^{5}+(5-5\beta )q^{7}+\cdots\)
1280.4.a.b 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{19}) \) None 320.4.d.a \(0\) \(-6\) \(10\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta )q^{3}+5q^{5}+(-5+5\beta )q^{7}+\cdots\)
1280.4.a.c 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.f \(0\) \(0\) \(-10\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-5q^{5}+15\beta q^{7}-5^{2}q^{9}-22\beta q^{11}+\cdots\)
1280.4.a.d 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{10}) \) None 640.4.d.e \(0\) \(0\) \(-10\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-5q^{5}+5\beta q^{7}-17q^{9}+8\beta q^{11}+\cdots\)
1280.4.a.e 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{10}) \) None 640.4.d.d \(0\) \(0\) \(-10\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-5q^{5}+\beta q^{7}-17q^{9}+20\beta q^{11}+\cdots\)
1280.4.a.f 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{34}) \) None 640.4.d.c \(0\) \(0\) \(-10\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-5q^{5}+\beta q^{7}+7q^{9}-4\beta q^{11}+\cdots\)
1280.4.a.g 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.b \(0\) \(0\) \(-10\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-5q^{5}-3\beta q^{7}+23q^{9}-8\beta q^{11}+\cdots\)
1280.4.a.h 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.a \(0\) \(0\) \(-10\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+7\beta q^{3}-5q^{5}+13\beta q^{7}+71q^{9}+\cdots\)
1280.4.a.i 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.f \(0\) \(0\) \(10\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+5q^{5}-15\beta q^{7}-5^{2}q^{9}-22\beta q^{11}+\cdots\)
1280.4.a.j 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{10}) \) None 640.4.d.d \(0\) \(0\) \(10\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+5q^{5}-\beta q^{7}-17q^{9}+20\beta q^{11}+\cdots\)
1280.4.a.k 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{10}) \) None 640.4.d.e \(0\) \(0\) \(10\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+5q^{5}-5\beta q^{7}-17q^{9}+8\beta q^{11}+\cdots\)
1280.4.a.l 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{34}) \) None 640.4.d.c \(0\) \(0\) \(10\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+5q^{5}-\beta q^{7}+7q^{9}-4\beta q^{11}+\cdots\)
1280.4.a.m 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.b \(0\) \(0\) \(10\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+5q^{5}+3\beta q^{7}+23q^{9}-8\beta q^{11}+\cdots\)
1280.4.a.n 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{2}) \) None 640.4.d.a \(0\) \(0\) \(10\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+7\beta q^{3}+5q^{5}-13\beta q^{7}+71q^{9}+\cdots\)
1280.4.a.o 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{19}) \) None 320.4.d.a \(0\) \(6\) \(-10\) \(-10\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta )q^{3}-5q^{5}+(-5-5\beta )q^{7}+\cdots\)
1280.4.a.p 1280.a 1.a $2$ $75.522$ \(\Q(\sqrt{19}) \) None 320.4.d.a \(0\) \(6\) \(10\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta )q^{3}+5q^{5}+(5+5\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
1280.4.a.q 1280.a 1.a $4$ $75.522$ 4.4.190224.1 None 320.4.d.c \(0\) \(0\) \(-20\) \(-32\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-5q^{5}+(-8+\beta _{1}-3\beta _{2}+\cdots)q^{7}+\cdots\)
1280.4.a.r 1280.a 1.a $4$ $75.522$ \(\Q(\sqrt{2}, \sqrt{5})\) None 640.4.d.i \(0\) \(0\) \(-20\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-5q^{5}+(-5\beta _{1}-\beta _{2})q^{7}+\cdots\)
1280.4.a.s 1280.a 1.a $4$ $75.522$ 4.4.13845312.2 None 640.4.d.h \(0\) \(0\) \(-20\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-5q^{5}+(-\beta _{1}-\beta _{2})q^{7}+(19+\cdots)q^{9}+\cdots\)
1280.4.a.t 1280.a 1.a $4$ $75.522$ \(\Q(\sqrt{2}, \sqrt{29})\) None 640.4.d.g \(0\) \(0\) \(-20\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}-5q^{5}+(-3\beta _{1}+\beta _{2})q^{7}+\cdots\)
1280.4.a.u 1280.a 1.a $4$ $75.522$ 4.4.190224.1 None 320.4.d.c \(0\) \(0\) \(-20\) \(32\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5q^{5}+(8-\beta _{1}+3\beta _{2})q^{7}+\cdots\)
1280.4.a.v 1280.a 1.a $4$ $75.522$ 4.4.190224.1 None 320.4.d.c \(0\) \(0\) \(20\) \(-32\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+5q^{5}+(-8+\beta _{1}-3\beta _{2}+\cdots)q^{7}+\cdots\)
1280.4.a.w 1280.a 1.a $4$ $75.522$ \(\Q(\sqrt{2}, \sqrt{5})\) None 640.4.d.i \(0\) \(0\) \(20\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+5q^{5}+(-5\beta _{1}-\beta _{2})q^{7}+\cdots\)
1280.4.a.x 1280.a 1.a $4$ $75.522$ 4.4.13845312.2 None 640.4.d.h \(0\) \(0\) \(20\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+5q^{5}+(\beta _{1}+\beta _{2})q^{7}+(19+\cdots)q^{9}+\cdots\)
1280.4.a.y 1280.a 1.a $4$ $75.522$ \(\Q(\sqrt{2}, \sqrt{29})\) None 640.4.d.g \(0\) \(0\) \(20\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+5q^{5}+(3\beta _{1}-\beta _{2})q^{7}+31q^{9}+\cdots\)
1280.4.a.z 1280.a 1.a $4$ $75.522$ 4.4.190224.1 None 320.4.d.c \(0\) \(0\) \(20\) \(32\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5q^{5}+(8-\beta _{1}+3\beta _{2})q^{7}+\cdots\)
1280.4.a.ba 1280.a 1.a $6$ $75.522$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 40.4.d.a \(0\) \(-6\) \(-30\) \(14\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}-5q^{5}+(2+\beta _{4})q^{7}+\cdots\)
1280.4.a.bb 1280.a 1.a $6$ $75.522$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 40.4.d.a \(0\) \(-6\) \(30\) \(-14\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+5q^{5}+(-2-\beta _{4}+\cdots)q^{7}+\cdots\)
1280.4.a.bc 1280.a 1.a $6$ $75.522$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 40.4.d.a \(0\) \(6\) \(-30\) \(-14\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}-5q^{5}+(-2-\beta _{4})q^{7}+\cdots\)
1280.4.a.bd 1280.a 1.a $6$ $75.522$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 40.4.d.a \(0\) \(6\) \(30\) \(14\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+5q^{5}+(2+\beta _{4})q^{7}+(9+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1280))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1280)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(640))\)\(^{\oplus 2}\)