Properties

Label 1280.3.g.e
Level $1280$
Weight $3$
Character orbit 1280.g
Analytic conductor $34.877$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Defining polynomial: \(x^{8} - x^{6} + x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -4 \zeta_{20} + 2 \zeta_{20}^{3} - 2 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{3} + ( 2 \zeta_{20}^{3} - \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{5} + ( 4 - 8 \zeta_{20}^{2} + 2 \zeta_{20}^{4} - 6 \zeta_{20}^{6} ) q^{7} + ( 3 + 4 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{9} +O(q^{10})\) \( q + ( -4 \zeta_{20} + 2 \zeta_{20}^{3} - 2 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{3} + ( 2 \zeta_{20}^{3} - \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{5} + ( 4 - 8 \zeta_{20}^{2} + 2 \zeta_{20}^{4} - 6 \zeta_{20}^{6} ) q^{7} + ( 3 + 4 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{9} + ( -8 \zeta_{20} + 12 \zeta_{20}^{3} - 4 \zeta_{20}^{5} - 4 \zeta_{20}^{7} ) q^{11} + ( -4 \zeta_{20}^{3} + 6 \zeta_{20}^{5} - 4 \zeta_{20}^{7} ) q^{13} + ( 4 - 8 \zeta_{20}^{2} + 2 \zeta_{20}^{4} - 6 \zeta_{20}^{6} ) q^{15} + ( -14 - 16 \zeta_{20}^{4} + 16 \zeta_{20}^{6} ) q^{17} + ( 8 \zeta_{20}^{3} - 8 \zeta_{20}^{7} ) q^{19} + ( 20 \zeta_{20}^{3} + 20 \zeta_{20}^{7} ) q^{21} + ( 4 - 8 \zeta_{20}^{2} - 2 \zeta_{20}^{4} - 10 \zeta_{20}^{6} ) q^{23} -5 q^{25} + ( 24 \zeta_{20} - 20 \zeta_{20}^{3} + 12 \zeta_{20}^{5} - 4 \zeta_{20}^{7} ) q^{27} + ( -8 \zeta_{20}^{3} + 6 \zeta_{20}^{5} - 8 \zeta_{20}^{7} ) q^{29} + ( 8 - 16 \zeta_{20}^{2} - 12 \zeta_{20}^{4} - 28 \zeta_{20}^{6} ) q^{31} + ( 8 - 24 \zeta_{20}^{4} + 24 \zeta_{20}^{6} ) q^{33} + ( 20 \zeta_{20} - 10 \zeta_{20}^{3} + 10 \zeta_{20}^{5} - 10 \zeta_{20}^{7} ) q^{35} + ( 20 \zeta_{20}^{3} - 6 \zeta_{20}^{5} + 20 \zeta_{20}^{7} ) q^{37} + ( -8 + 16 \zeta_{20}^{2} - 12 \zeta_{20}^{4} + 4 \zeta_{20}^{6} ) q^{39} + ( 34 + 12 \zeta_{20}^{4} - 12 \zeta_{20}^{6} ) q^{41} + ( -12 \zeta_{20} + 14 \zeta_{20}^{3} - 6 \zeta_{20}^{5} - 2 \zeta_{20}^{7} ) q^{43} + ( 2 \zeta_{20}^{3} + 9 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{45} + ( 12 - 24 \zeta_{20}^{2} + 38 \zeta_{20}^{4} + 14 \zeta_{20}^{6} ) q^{47} + ( -11 - 20 \zeta_{20}^{4} + 20 \zeta_{20}^{6} ) q^{49} + ( 56 \zeta_{20} + 4 \zeta_{20}^{3} + 28 \zeta_{20}^{5} - 60 \zeta_{20}^{7} ) q^{51} + ( 20 \zeta_{20}^{3} - 54 \zeta_{20}^{5} + 20 \zeta_{20}^{7} ) q^{53} + ( 16 - 32 \zeta_{20}^{2} + 28 \zeta_{20}^{4} - 4 \zeta_{20}^{6} ) q^{55} + ( -16 - 32 \zeta_{20}^{4} + 32 \zeta_{20}^{6} ) q^{57} + ( 48 \zeta_{20} + 24 \zeta_{20}^{5} - 48 \zeta_{20}^{7} ) q^{59} + ( 52 \zeta_{20}^{3} - 58 \zeta_{20}^{5} + 52 \zeta_{20}^{7} ) q^{61} + ( 4 - 8 \zeta_{20}^{2} - 18 \zeta_{20}^{4} - 26 \zeta_{20}^{6} ) q^{63} + ( 6 - 8 \zeta_{20}^{4} + 8 \zeta_{20}^{6} ) q^{65} + ( -44 \zeta_{20} - 18 \zeta_{20}^{3} - 22 \zeta_{20}^{5} + 62 \zeta_{20}^{7} ) q^{67} + ( 28 \zeta_{20}^{3} + 16 \zeta_{20}^{5} + 28 \zeta_{20}^{7} ) q^{69} + ( 40 - 80 \zeta_{20}^{2} + 44 \zeta_{20}^{4} - 36 \zeta_{20}^{6} ) q^{71} + ( -98 - 64 \zeta_{20}^{4} + 64 \zeta_{20}^{6} ) q^{73} + ( 20 \zeta_{20} - 10 \zeta_{20}^{3} + 10 \zeta_{20}^{5} - 10 \zeta_{20}^{7} ) q^{75} + ( 40 \zeta_{20}^{3} - 80 \zeta_{20}^{5} + 40 \zeta_{20}^{7} ) q^{77} + ( -32 + 64 \zeta_{20}^{2} + 8 \zeta_{20}^{4} + 72 \zeta_{20}^{6} ) q^{79} + ( -83 - 28 \zeta_{20}^{4} + 28 \zeta_{20}^{6} ) q^{81} + ( -52 \zeta_{20} + 50 \zeta_{20}^{3} - 26 \zeta_{20}^{5} + 2 \zeta_{20}^{7} ) q^{83} + ( -12 \zeta_{20}^{3} - 34 \zeta_{20}^{5} - 12 \zeta_{20}^{7} ) q^{85} + ( -16 + 32 \zeta_{20}^{2} - 12 \zeta_{20}^{4} + 20 \zeta_{20}^{6} ) q^{87} + ( -18 - 80 \zeta_{20}^{4} + 80 \zeta_{20}^{6} ) q^{89} + ( -24 \zeta_{20} + 28 \zeta_{20}^{3} - 12 \zeta_{20}^{5} - 4 \zeta_{20}^{7} ) q^{91} + ( 72 \zeta_{20}^{3} + 64 \zeta_{20}^{5} + 72 \zeta_{20}^{7} ) q^{93} + ( 8 - 16 \zeta_{20}^{2} + 24 \zeta_{20}^{4} + 8 \zeta_{20}^{6} ) q^{95} + ( -54 + 24 \zeta_{20}^{4} - 24 \zeta_{20}^{6} ) q^{97} + ( 40 \zeta_{20} - 44 \zeta_{20}^{3} + 20 \zeta_{20}^{5} + 4 \zeta_{20}^{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{9} + O(q^{10}) \) \( 8q + 8q^{9} - 48q^{17} - 40q^{25} + 160q^{33} + 224q^{41} - 8q^{49} + 80q^{65} - 528q^{73} - 552q^{81} + 176q^{89} - 528q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1151.1
0.951057 0.309017i
0.951057 + 0.309017i
0.587785 0.809017i
0.587785 + 0.809017i
−0.587785 0.809017i
−0.587785 + 0.809017i
−0.951057 0.309017i
−0.951057 + 0.309017i
0 −3.80423 0 2.23607i 0 8.50651i 0 5.47214 0
1151.2 0 −3.80423 0 2.23607i 0 8.50651i 0 5.47214 0
1151.3 0 −2.35114 0 2.23607i 0 5.25731i 0 −3.47214 0
1151.4 0 −2.35114 0 2.23607i 0 5.25731i 0 −3.47214 0
1151.5 0 2.35114 0 2.23607i 0 5.25731i 0 −3.47214 0
1151.6 0 2.35114 0 2.23607i 0 5.25731i 0 −3.47214 0
1151.7 0 3.80423 0 2.23607i 0 8.50651i 0 5.47214 0
1151.8 0 3.80423 0 2.23607i 0 8.50651i 0 5.47214 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1151.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.3.g.e 8
4.b odd 2 1 inner 1280.3.g.e 8
8.b even 2 1 inner 1280.3.g.e 8
8.d odd 2 1 inner 1280.3.g.e 8
16.e even 4 1 20.3.b.a 4
16.e even 4 1 320.3.b.c 4
16.f odd 4 1 20.3.b.a 4
16.f odd 4 1 320.3.b.c 4
48.i odd 4 1 180.3.c.a 4
48.i odd 4 1 2880.3.e.e 4
48.k even 4 1 180.3.c.a 4
48.k even 4 1 2880.3.e.e 4
80.i odd 4 1 100.3.d.b 8
80.i odd 4 1 1600.3.h.n 8
80.j even 4 1 100.3.d.b 8
80.j even 4 1 1600.3.h.n 8
80.k odd 4 1 100.3.b.f 4
80.k odd 4 1 1600.3.b.s 4
80.q even 4 1 100.3.b.f 4
80.q even 4 1 1600.3.b.s 4
80.s even 4 1 100.3.d.b 8
80.s even 4 1 1600.3.h.n 8
80.t odd 4 1 100.3.d.b 8
80.t odd 4 1 1600.3.h.n 8
240.t even 4 1 900.3.c.k 4
240.z odd 4 1 900.3.f.e 8
240.bb even 4 1 900.3.f.e 8
240.bd odd 4 1 900.3.f.e 8
240.bf even 4 1 900.3.f.e 8
240.bm odd 4 1 900.3.c.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.3.b.a 4 16.e even 4 1
20.3.b.a 4 16.f odd 4 1
100.3.b.f 4 80.k odd 4 1
100.3.b.f 4 80.q even 4 1
100.3.d.b 8 80.i odd 4 1
100.3.d.b 8 80.j even 4 1
100.3.d.b 8 80.s even 4 1
100.3.d.b 8 80.t odd 4 1
180.3.c.a 4 48.i odd 4 1
180.3.c.a 4 48.k even 4 1
320.3.b.c 4 16.e even 4 1
320.3.b.c 4 16.f odd 4 1
900.3.c.k 4 240.t even 4 1
900.3.c.k 4 240.bm odd 4 1
900.3.f.e 8 240.z odd 4 1
900.3.f.e 8 240.bb even 4 1
900.3.f.e 8 240.bd odd 4 1
900.3.f.e 8 240.bf even 4 1
1280.3.g.e 8 1.a even 1 1 trivial
1280.3.g.e 8 4.b odd 2 1 inner
1280.3.g.e 8 8.b even 2 1 inner
1280.3.g.e 8 8.d odd 2 1 inner
1600.3.b.s 4 80.k odd 4 1
1600.3.b.s 4 80.q even 4 1
1600.3.h.n 8 80.i odd 4 1
1600.3.h.n 8 80.j even 4 1
1600.3.h.n 8 80.s even 4 1
1600.3.h.n 8 80.t odd 4 1
2880.3.e.e 4 48.i odd 4 1
2880.3.e.e 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 20 T_{3}^{2} + 80 \) acting on \(S_{3}^{\mathrm{new}}(1280, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( ( 80 - 20 T^{2} + T^{4} )^{2} \)
$5$ \( ( 5 + T^{2} )^{4} \)
$7$ \( ( 2000 + 100 T^{2} + T^{4} )^{2} \)
$11$ \( ( 1280 - 400 T^{2} + T^{4} )^{2} \)
$13$ \( ( 16 + 72 T^{2} + T^{4} )^{2} \)
$17$ \( ( -284 + 12 T + T^{2} )^{4} \)
$19$ \( ( 20480 - 320 T^{2} + T^{4} )^{2} \)
$23$ \( ( 80 + 260 T^{2} + T^{4} )^{2} \)
$29$ \( ( 5776 + 168 T^{2} + T^{4} )^{2} \)
$31$ \( ( 154880 + 2320 T^{2} + T^{4} )^{2} \)
$37$ \( ( 234256 + 1032 T^{2} + T^{4} )^{2} \)
$41$ \( ( 604 - 56 T + T^{2} )^{4} \)
$43$ \( ( 2000 - 500 T^{2} + T^{4} )^{2} \)
$47$ \( ( 3561680 + 4100 T^{2} + T^{4} )^{2} \)
$53$ \( ( 2062096 + 4872 T^{2} + T^{4} )^{2} \)
$59$ \( ( 1658880 - 5760 T^{2} + T^{4} )^{2} \)
$61$ \( ( 5550736 + 8808 T^{2} + T^{4} )^{2} \)
$67$ \( ( 19920080 - 10420 T^{2} + T^{4} )^{2} \)
$71$ \( ( 10138880 + 8080 T^{2} + T^{4} )^{2} \)
$73$ \( ( -764 + 132 T + T^{2} )^{4} \)
$79$ \( ( 2478080 + 13120 T^{2} + T^{4} )^{2} \)
$83$ \( ( 2620880 - 6260 T^{2} + T^{4} )^{2} \)
$89$ \( ( -7516 - 44 T + T^{2} )^{4} \)
$97$ \( ( 3636 + 132 T + T^{2} )^{4} \)
show more
show less