Defining parameters
| Level: | \( N \) | \(=\) | \( 1280 = 2^{8} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1280.q (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1280, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 432 | 96 | 336 |
| Cusp forms | 336 | 96 | 240 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1280, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1280.2.q.a | $16$ | $10.221$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{5}q^{3}+(-\beta _{4}+\beta _{9}-\beta _{15})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\) |
| 1280.2.q.b | $16$ | $10.221$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q-\beta _{5}q^{3}+(\beta _{4}-\beta _{9}+\beta _{15})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\) |
| 1280.2.q.c | $32$ | $10.221$ | None | \(0\) | \(0\) | \(-8\) | \(0\) | ||
| 1280.2.q.d | $32$ | $10.221$ | None | \(0\) | \(0\) | \(8\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1280, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)