Properties

Label 1280.2.q
Level $1280$
Weight $2$
Character orbit 1280.q
Rep. character $\chi_{1280}(449,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $4$
Sturm bound $384$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1280, [\chi])\).

Total New Old
Modular forms 432 96 336
Cusp forms 336 96 240
Eisenstein series 96 0 96

Trace form

\( 96 q + 96 q^{49} + 96 q^{65} - 96 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1280, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1280.2.q.a 1280.q 80.q $16$ $10.221$ 16.0.\(\cdots\).9 None 1280.2.q.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{3}+(-\beta _{4}+\beta _{9}-\beta _{15})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1280.2.q.b 1280.q 80.q $16$ $10.221$ 16.0.\(\cdots\).9 None 1280.2.q.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{3}+(\beta _{4}-\beta _{9}+\beta _{15})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1280.2.q.c 1280.q 80.q $32$ $10.221$ None 1280.2.q.c \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1280.2.q.d 1280.q 80.q $32$ $10.221$ None 1280.2.q.c \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)