Properties

Label 1280.2.o.f.127.1
Level $1280$
Weight $2$
Character 1280.127
Analytic conductor $10.221$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(127,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.127
Dual form 1280.2.o.f.383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +(2.00000 - 1.00000i) q^{5} +(3.00000 - 3.00000i) q^{7} +1.00000i q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.00000i) q^{3} +(2.00000 - 1.00000i) q^{5} +(3.00000 - 3.00000i) q^{7} +1.00000i q^{9} -2.00000 q^{11} +(3.00000 + 3.00000i) q^{13} +(-1.00000 + 3.00000i) q^{15} +(1.00000 + 1.00000i) q^{17} +4.00000i q^{19} +6.00000i q^{21} +(1.00000 + 1.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +(-4.00000 - 4.00000i) q^{27} -10.0000i q^{31} +(2.00000 - 2.00000i) q^{33} +(3.00000 - 9.00000i) q^{35} +(-1.00000 + 1.00000i) q^{37} -6.00000 q^{39} +10.0000 q^{41} +(5.00000 - 5.00000i) q^{43} +(1.00000 + 2.00000i) q^{45} +(-3.00000 + 3.00000i) q^{47} -11.0000i q^{49} -2.00000 q^{51} +(5.00000 + 5.00000i) q^{53} +(-4.00000 + 2.00000i) q^{55} +(-4.00000 - 4.00000i) q^{57} +12.0000i q^{59} +2.00000i q^{61} +(3.00000 + 3.00000i) q^{63} +(9.00000 + 3.00000i) q^{65} +(-1.00000 - 1.00000i) q^{67} -2.00000 q^{69} +2.00000i q^{71} +(-1.00000 + 1.00000i) q^{73} +(1.00000 + 7.00000i) q^{75} +(-6.00000 + 6.00000i) q^{77} +8.00000 q^{79} +5.00000 q^{81} +(-5.00000 + 5.00000i) q^{83} +(3.00000 + 1.00000i) q^{85} -16.0000i q^{89} +18.0000 q^{91} +(10.0000 + 10.0000i) q^{93} +(4.00000 + 8.00000i) q^{95} +(-3.00000 - 3.00000i) q^{97} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{5} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 4 q^{5} + 6 q^{7} - 4 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 2 q^{23} + 6 q^{25} - 8 q^{27} + 4 q^{33} + 6 q^{35} - 2 q^{37} - 12 q^{39} + 20 q^{41} + 10 q^{43} + 2 q^{45} - 6 q^{47} - 4 q^{51} + 10 q^{53} - 8 q^{55} - 8 q^{57} + 6 q^{63} + 18 q^{65} - 2 q^{67} - 4 q^{69} - 2 q^{73} + 2 q^{75} - 12 q^{77} + 16 q^{79} + 10 q^{81} - 10 q^{83} + 6 q^{85} + 36 q^{91} + 20 q^{93} + 8 q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 3.00000 3.00000i 1.13389 1.13389i 0.144370 0.989524i \(-0.453885\pi\)
0.989524 0.144370i \(-0.0461154\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 3.00000 + 3.00000i 0.832050 + 0.832050i 0.987797 0.155747i \(-0.0497784\pi\)
−0.155747 + 0.987797i \(0.549778\pi\)
\(14\) 0 0
\(15\) −1.00000 + 3.00000i −0.258199 + 0.774597i
\(16\) 0 0
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 6.00000i 1.30931i
\(22\) 0 0
\(23\) 1.00000 + 1.00000i 0.208514 + 0.208514i 0.803636 0.595121i \(-0.202896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i −0.439941 0.898027i \(-0.645001\pi\)
0.439941 0.898027i \(-0.354999\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) 3.00000 9.00000i 0.507093 1.52128i
\(36\) 0 0
\(37\) −1.00000 + 1.00000i −0.164399 + 0.164399i −0.784512 0.620113i \(-0.787087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 5.00000 5.00000i 0.762493 0.762493i −0.214280 0.976772i \(-0.568740\pi\)
0.976772 + 0.214280i \(0.0687403\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) −3.00000 + 3.00000i −0.437595 + 0.437595i −0.891202 0.453607i \(-0.850137\pi\)
0.453607 + 0.891202i \(0.350137\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −4.00000 + 2.00000i −0.539360 + 0.269680i
\(56\) 0 0
\(57\) −4.00000 4.00000i −0.529813 0.529813i
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i 0.991769 + 0.128037i \(0.0408676\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(62\) 0 0
\(63\) 3.00000 + 3.00000i 0.377964 + 0.377964i
\(64\) 0 0
\(65\) 9.00000 + 3.00000i 1.11631 + 0.372104i
\(66\) 0 0
\(67\) −1.00000 1.00000i −0.122169 0.122169i 0.643379 0.765548i \(-0.277532\pi\)
−0.765548 + 0.643379i \(0.777532\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 2.00000i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.00000i −0.117041 + 0.117041i −0.763202 0.646160i \(-0.776374\pi\)
0.646160 + 0.763202i \(0.276374\pi\)
\(74\) 0 0
\(75\) 1.00000 + 7.00000i 0.115470 + 0.808290i
\(76\) 0 0
\(77\) −6.00000 + 6.00000i −0.683763 + 0.683763i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −5.00000 + 5.00000i −0.548821 + 0.548821i −0.926100 0.377279i \(-0.876860\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(84\) 0 0
\(85\) 3.00000 + 1.00000i 0.325396 + 0.108465i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000i 1.69600i −0.529999 0.847998i \(-0.677808\pi\)
0.529999 0.847998i \(-0.322192\pi\)
\(90\) 0 0
\(91\) 18.0000 1.88691
\(92\) 0 0
\(93\) 10.0000 + 10.0000i 1.03695 + 1.03695i
\(94\) 0 0
\(95\) 4.00000 + 8.00000i 0.410391 + 0.820783i
\(96\) 0 0
\(97\) −3.00000 3.00000i −0.304604 0.304604i 0.538208 0.842812i \(-0.319101\pi\)
−0.842812 + 0.538208i \(0.819101\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) 0 0
\(103\) 9.00000 + 9.00000i 0.886796 + 0.886796i 0.994214 0.107418i \(-0.0342582\pi\)
−0.107418 + 0.994214i \(0.534258\pi\)
\(104\) 0 0
\(105\) 6.00000 + 12.0000i 0.585540 + 1.17108i
\(106\) 0 0
\(107\) −3.00000 3.00000i −0.290021 0.290021i 0.547068 0.837088i \(-0.315744\pi\)
−0.837088 + 0.547068i \(0.815744\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 2.00000i 0.189832i
\(112\) 0 0
\(113\) −3.00000 + 3.00000i −0.282216 + 0.282216i −0.833992 0.551776i \(-0.813950\pi\)
0.551776 + 0.833992i \(0.313950\pi\)
\(114\) 0 0
\(115\) 3.00000 + 1.00000i 0.279751 + 0.0932505i
\(116\) 0 0
\(117\) −3.00000 + 3.00000i −0.277350 + 0.277350i
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −10.0000 + 10.0000i −0.901670 + 0.901670i
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) −7.00000 + 7.00000i −0.621150 + 0.621150i −0.945825 0.324676i \(-0.894745\pi\)
0.324676 + 0.945825i \(0.394745\pi\)
\(128\) 0 0
\(129\) 10.0000i 0.880451i
\(130\) 0 0
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 0 0
\(133\) 12.0000 + 12.0000i 1.04053 + 1.04053i
\(134\) 0 0
\(135\) −12.0000 4.00000i −1.03280 0.344265i
\(136\) 0 0
\(137\) 11.0000 + 11.0000i 0.939793 + 0.939793i 0.998288 0.0584943i \(-0.0186300\pi\)
−0.0584943 + 0.998288i \(0.518630\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) 6.00000i 0.505291i
\(142\) 0 0
\(143\) −6.00000 6.00000i −0.501745 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.0000 + 11.0000i 0.907265 + 0.907265i
\(148\) 0 0
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) 6.00000i 0.488273i −0.969741 0.244137i \(-0.921495\pi\)
0.969741 0.244137i \(-0.0785045\pi\)
\(152\) 0 0
\(153\) −1.00000 + 1.00000i −0.0808452 + 0.0808452i
\(154\) 0 0
\(155\) −10.0000 20.0000i −0.803219 1.60644i
\(156\) 0 0
\(157\) 1.00000 1.00000i 0.0798087 0.0798087i −0.666076 0.745884i \(-0.732027\pi\)
0.745884 + 0.666076i \(0.232027\pi\)
\(158\) 0 0
\(159\) −10.0000 −0.793052
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −1.00000 + 1.00000i −0.0783260 + 0.0783260i −0.745184 0.666858i \(-0.767639\pi\)
0.666858 + 0.745184i \(0.267639\pi\)
\(164\) 0 0
\(165\) 2.00000 6.00000i 0.155700 0.467099i
\(166\) 0 0
\(167\) −1.00000 + 1.00000i −0.0773823 + 0.0773823i −0.744739 0.667356i \(-0.767426\pi\)
0.667356 + 0.744739i \(0.267426\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −5.00000 5.00000i −0.380143 0.380143i 0.491011 0.871154i \(-0.336628\pi\)
−0.871154 + 0.491011i \(0.836628\pi\)
\(174\) 0 0
\(175\) −3.00000 21.0000i −0.226779 1.58745i
\(176\) 0 0
\(177\) −12.0000 12.0000i −0.901975 0.901975i
\(178\) 0 0
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) 22.0000i 1.63525i −0.575753 0.817624i \(-0.695291\pi\)
0.575753 0.817624i \(-0.304709\pi\)
\(182\) 0 0
\(183\) −2.00000 2.00000i −0.147844 0.147844i
\(184\) 0 0
\(185\) −1.00000 + 3.00000i −0.0735215 + 0.220564i
\(186\) 0 0
\(187\) −2.00000 2.00000i −0.146254 0.146254i
\(188\) 0 0
\(189\) −24.0000 −1.74574
\(190\) 0 0
\(191\) 14.0000i 1.01300i 0.862239 + 0.506502i \(0.169062\pi\)
−0.862239 + 0.506502i \(0.830938\pi\)
\(192\) 0 0
\(193\) −15.0000 + 15.0000i −1.07972 + 1.07972i −0.0831899 + 0.996534i \(0.526511\pi\)
−0.996534 + 0.0831899i \(0.973489\pi\)
\(194\) 0 0
\(195\) −12.0000 + 6.00000i −0.859338 + 0.429669i
\(196\) 0 0
\(197\) −13.0000 + 13.0000i −0.926212 + 0.926212i −0.997459 0.0712470i \(-0.977302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 20.0000 10.0000i 1.39686 0.698430i
\(206\) 0 0
\(207\) −1.00000 + 1.00000i −0.0695048 + 0.0695048i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) −2.00000 2.00000i −0.137038 0.137038i
\(214\) 0 0
\(215\) 5.00000 15.0000i 0.340997 1.02299i
\(216\) 0 0
\(217\) −30.0000 30.0000i −2.03653 2.03653i
\(218\) 0 0
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 6.00000i 0.403604i
\(222\) 0 0
\(223\) −1.00000 1.00000i −0.0669650 0.0669650i 0.672831 0.739796i \(-0.265078\pi\)
−0.739796 + 0.672831i \(0.765078\pi\)
\(224\) 0 0
\(225\) 4.00000 + 3.00000i 0.266667 + 0.200000i
\(226\) 0 0
\(227\) −5.00000 5.00000i −0.331862 0.331862i 0.521431 0.853293i \(-0.325398\pi\)
−0.853293 + 0.521431i \(0.825398\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) 12.0000i 0.789542i
\(232\) 0 0
\(233\) −21.0000 + 21.0000i −1.37576 + 1.37576i −0.524097 + 0.851658i \(0.675597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −3.00000 + 9.00000i −0.195698 + 0.587095i
\(236\) 0 0
\(237\) −8.00000 + 8.00000i −0.519656 + 0.519656i
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 0 0
\(245\) −11.0000 22.0000i −0.702764 1.40553i
\(246\) 0 0
\(247\) −12.0000 + 12.0000i −0.763542 + 0.763542i
\(248\) 0 0
\(249\) 10.0000i 0.633724i
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) −2.00000 2.00000i −0.125739 0.125739i
\(254\) 0 0
\(255\) −4.00000 + 2.00000i −0.250490 + 0.125245i
\(256\) 0 0
\(257\) 5.00000 + 5.00000i 0.311891 + 0.311891i 0.845642 0.533751i \(-0.179218\pi\)
−0.533751 + 0.845642i \(0.679218\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0000 11.0000i −0.678289 0.678289i 0.281324 0.959613i \(-0.409226\pi\)
−0.959613 + 0.281324i \(0.909226\pi\)
\(264\) 0 0
\(265\) 15.0000 + 5.00000i 0.921443 + 0.307148i
\(266\) 0 0
\(267\) 16.0000 + 16.0000i 0.979184 + 0.979184i
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 14.0000i 0.850439i 0.905090 + 0.425220i \(0.139803\pi\)
−0.905090 + 0.425220i \(0.860197\pi\)
\(272\) 0 0
\(273\) −18.0000 + 18.0000i −1.08941 + 1.08941i
\(274\) 0 0
\(275\) −6.00000 + 8.00000i −0.361814 + 0.482418i
\(276\) 0 0
\(277\) 11.0000 11.0000i 0.660926 0.660926i −0.294672 0.955598i \(-0.595211\pi\)
0.955598 + 0.294672i \(0.0952105\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −7.00000 + 7.00000i −0.416107 + 0.416107i −0.883859 0.467753i \(-0.845064\pi\)
0.467753 + 0.883859i \(0.345064\pi\)
\(284\) 0 0
\(285\) −12.0000 4.00000i −0.710819 0.236940i
\(286\) 0 0
\(287\) 30.0000 30.0000i 1.77084 1.77084i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) −11.0000 11.0000i −0.642627 0.642627i 0.308574 0.951200i \(-0.400148\pi\)
−0.951200 + 0.308574i \(0.900148\pi\)
\(294\) 0 0
\(295\) 12.0000 + 24.0000i 0.698667 + 1.39733i
\(296\) 0 0
\(297\) 8.00000 + 8.00000i 0.464207 + 0.464207i
\(298\) 0 0
\(299\) 6.00000i 0.346989i
\(300\) 0 0
\(301\) 30.0000i 1.72917i
\(302\) 0 0
\(303\) 6.00000 + 6.00000i 0.344691 + 0.344691i
\(304\) 0 0
\(305\) 2.00000 + 4.00000i 0.114520 + 0.229039i
\(306\) 0 0
\(307\) −17.0000 17.0000i −0.970241 0.970241i 0.0293286 0.999570i \(-0.490663\pi\)
−0.999570 + 0.0293286i \(0.990663\pi\)
\(308\) 0 0
\(309\) −18.0000 −1.02398
\(310\) 0 0
\(311\) 18.0000i 1.02069i 0.859971 + 0.510343i \(0.170482\pi\)
−0.859971 + 0.510343i \(0.829518\pi\)
\(312\) 0 0
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) 0 0
\(315\) 9.00000 + 3.00000i 0.507093 + 0.169031i
\(316\) 0 0
\(317\) 13.0000 13.0000i 0.730153 0.730153i −0.240497 0.970650i \(-0.577310\pi\)
0.970650 + 0.240497i \(0.0773105\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −4.00000 + 4.00000i −0.222566 + 0.222566i
\(324\) 0 0
\(325\) 21.0000 3.00000i 1.16487 0.166410i
\(326\) 0 0
\(327\) −4.00000 + 4.00000i −0.221201 + 0.221201i
\(328\) 0 0
\(329\) 18.0000i 0.992372i
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) −1.00000 1.00000i −0.0547997 0.0547997i
\(334\) 0 0
\(335\) −3.00000 1.00000i −0.163908 0.0546358i
\(336\) 0 0
\(337\) −15.0000 15.0000i −0.817102 0.817102i 0.168585 0.985687i \(-0.446080\pi\)
−0.985687 + 0.168585i \(0.946080\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 20.0000i 1.08306i
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 0 0
\(345\) −4.00000 + 2.00000i −0.215353 + 0.107676i
\(346\) 0 0
\(347\) 9.00000 + 9.00000i 0.483145 + 0.483145i 0.906135 0.422989i \(-0.139019\pi\)
−0.422989 + 0.906135i \(0.639019\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) −15.0000 + 15.0000i −0.798369 + 0.798369i −0.982838 0.184469i \(-0.940943\pi\)
0.184469 + 0.982838i \(0.440943\pi\)
\(354\) 0 0
\(355\) 2.00000 + 4.00000i 0.106149 + 0.212298i
\(356\) 0 0
\(357\) −6.00000 + 6.00000i −0.317554 + 0.317554i
\(358\) 0 0
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 7.00000 7.00000i 0.367405 0.367405i
\(364\) 0 0
\(365\) −1.00000 + 3.00000i −0.0523424 + 0.157027i
\(366\) 0 0
\(367\) −15.0000 + 15.0000i −0.782994 + 0.782994i −0.980335 0.197341i \(-0.936769\pi\)
0.197341 + 0.980335i \(0.436769\pi\)
\(368\) 0 0
\(369\) 10.0000i 0.520579i
\(370\) 0 0
\(371\) 30.0000 1.55752
\(372\) 0 0
\(373\) 9.00000 + 9.00000i 0.466002 + 0.466002i 0.900617 0.434614i \(-0.143115\pi\)
−0.434614 + 0.900617i \(0.643115\pi\)
\(374\) 0 0
\(375\) 9.00000 + 13.0000i 0.464758 + 0.671317i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000i 1.02733i −0.857991 0.513665i \(-0.828287\pi\)
0.857991 0.513665i \(-0.171713\pi\)
\(380\) 0 0
\(381\) 14.0000i 0.717242i
\(382\) 0 0
\(383\) −1.00000 1.00000i −0.0510976 0.0510976i 0.681096 0.732194i \(-0.261504\pi\)
−0.732194 + 0.681096i \(0.761504\pi\)
\(384\) 0 0
\(385\) −6.00000 + 18.0000i −0.305788 + 0.917365i
\(386\) 0 0
\(387\) 5.00000 + 5.00000i 0.254164 + 0.254164i
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) 2.00000i 0.101144i
\(392\) 0 0
\(393\) −10.0000 + 10.0000i −0.504433 + 0.504433i
\(394\) 0 0
\(395\) 16.0000 8.00000i 0.805047 0.402524i
\(396\) 0 0
\(397\) −15.0000 + 15.0000i −0.752828 + 0.752828i −0.975006 0.222178i \(-0.928683\pi\)
0.222178 + 0.975006i \(0.428683\pi\)
\(398\) 0 0
\(399\) −24.0000 −1.20150
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 30.0000 30.0000i 1.49441 1.49441i
\(404\) 0 0
\(405\) 10.0000 5.00000i 0.496904 0.248452i
\(406\) 0 0
\(407\) 2.00000 2.00000i 0.0991363 0.0991363i
\(408\) 0 0
\(409\) 20.0000i 0.988936i −0.869196 0.494468i \(-0.835363\pi\)
0.869196 0.494468i \(-0.164637\pi\)
\(410\) 0 0
\(411\) −22.0000 −1.08518
\(412\) 0 0
\(413\) 36.0000 + 36.0000i 1.77144 + 1.77144i
\(414\) 0 0
\(415\) −5.00000 + 15.0000i −0.245440 + 0.736321i
\(416\) 0 0
\(417\) 12.0000 + 12.0000i 0.587643 + 0.587643i
\(418\) 0 0
\(419\) 28.0000i 1.36789i 0.729534 + 0.683945i \(0.239737\pi\)
−0.729534 + 0.683945i \(0.760263\pi\)
\(420\) 0 0
\(421\) 34.0000i 1.65706i −0.559946 0.828529i \(-0.689178\pi\)
0.559946 0.828529i \(-0.310822\pi\)
\(422\) 0 0
\(423\) −3.00000 3.00000i −0.145865 0.145865i
\(424\) 0 0
\(425\) 7.00000 1.00000i 0.339550 0.0485071i
\(426\) 0 0
\(427\) 6.00000 + 6.00000i 0.290360 + 0.290360i
\(428\) 0 0
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) 30.0000i 1.44505i 0.691345 + 0.722525i \(0.257018\pi\)
−0.691345 + 0.722525i \(0.742982\pi\)
\(432\) 0 0
\(433\) 21.0000 21.0000i 1.00920 1.00920i 0.00923827 0.999957i \(-0.497059\pi\)
0.999957 0.00923827i \(-0.00294067\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.00000 + 4.00000i −0.191346 + 0.191346i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 11.0000 0.523810
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) −16.0000 32.0000i −0.758473 1.51695i
\(446\) 0 0
\(447\) 4.00000 4.00000i 0.189194 0.189194i
\(448\) 0 0
\(449\) 12.0000i 0.566315i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913819\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) 6.00000 + 6.00000i 0.281905 + 0.281905i
\(454\) 0 0
\(455\) 36.0000 18.0000i 1.68771 0.843853i
\(456\) 0 0
\(457\) −9.00000 9.00000i −0.421002 0.421002i 0.464546 0.885549i \(-0.346217\pi\)
−0.885549 + 0.464546i \(0.846217\pi\)
\(458\) 0 0
\(459\) 8.00000i 0.373408i
\(460\) 0 0
\(461\) 2.00000i 0.0931493i −0.998915 0.0465746i \(-0.985169\pi\)
0.998915 0.0465746i \(-0.0148305\pi\)
\(462\) 0 0
\(463\) 11.0000 + 11.0000i 0.511213 + 0.511213i 0.914898 0.403685i \(-0.132271\pi\)
−0.403685 + 0.914898i \(0.632271\pi\)
\(464\) 0 0
\(465\) 30.0000 + 10.0000i 1.39122 + 0.463739i
\(466\) 0 0
\(467\) −13.0000 13.0000i −0.601568 0.601568i 0.339160 0.940729i \(-0.389857\pi\)
−0.940729 + 0.339160i \(0.889857\pi\)
\(468\) 0 0
\(469\) −6.00000 −0.277054
\(470\) 0 0
\(471\) 2.00000i 0.0921551i
\(472\) 0 0
\(473\) −10.0000 + 10.0000i −0.459800 + 0.459800i
\(474\) 0 0
\(475\) 16.0000 + 12.0000i 0.734130 + 0.550598i
\(476\) 0 0
\(477\) −5.00000 + 5.00000i −0.228934 + 0.228934i
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) −6.00000 + 6.00000i −0.273009 + 0.273009i
\(484\) 0 0
\(485\) −9.00000 3.00000i −0.408669 0.136223i
\(486\) 0 0
\(487\) 19.0000 19.0000i 0.860972 0.860972i −0.130479 0.991451i \(-0.541651\pi\)
0.991451 + 0.130479i \(0.0416515\pi\)
\(488\) 0 0
\(489\) 2.00000i 0.0904431i
\(490\) 0 0
\(491\) −10.0000 −0.451294 −0.225647 0.974209i \(-0.572450\pi\)
−0.225647 + 0.974209i \(0.572450\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.00000 4.00000i −0.0898933 0.179787i
\(496\) 0 0
\(497\) 6.00000 + 6.00000i 0.269137 + 0.269137i
\(498\) 0 0
\(499\) 28.0000i 1.25345i 0.779240 + 0.626726i \(0.215605\pi\)
−0.779240 + 0.626726i \(0.784395\pi\)
\(500\) 0 0
\(501\) 2.00000i 0.0893534i
\(502\) 0 0
\(503\) 17.0000 + 17.0000i 0.757993 + 0.757993i 0.975957 0.217964i \(-0.0699416\pi\)
−0.217964 + 0.975957i \(0.569942\pi\)
\(504\) 0 0
\(505\) −6.00000 12.0000i −0.266996 0.533993i
\(506\) 0 0
\(507\) −5.00000 5.00000i −0.222058 0.222058i
\(508\) 0 0
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 6.00000i 0.265424i
\(512\) 0 0
\(513\) 16.0000 16.0000i 0.706417 0.706417i
\(514\) 0 0
\(515\) 27.0000 + 9.00000i 1.18976 + 0.396587i
\(516\) 0 0
\(517\) 6.00000 6.00000i 0.263880 0.263880i
\(518\) 0 0
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −15.0000 + 15.0000i −0.655904 + 0.655904i −0.954408 0.298504i \(-0.903512\pi\)
0.298504 + 0.954408i \(0.403512\pi\)
\(524\) 0 0
\(525\) 24.0000 + 18.0000i 1.04745 + 0.785584i
\(526\) 0 0
\(527\) 10.0000 10.0000i 0.435607 0.435607i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 30.0000 + 30.0000i 1.29944 + 1.29944i
\(534\) 0 0
\(535\) −9.00000 3.00000i −0.389104 0.129701i
\(536\) 0 0
\(537\) 12.0000 + 12.0000i 0.517838 + 0.517838i
\(538\) 0 0
\(539\) 22.0000i 0.947607i
\(540\) 0 0
\(541\) 30.0000i 1.28980i 0.764267 + 0.644900i \(0.223101\pi\)
−0.764267 + 0.644900i \(0.776899\pi\)
\(542\) 0 0
\(543\) 22.0000 + 22.0000i 0.944110 + 0.944110i
\(544\) 0 0
\(545\) 8.00000 4.00000i 0.342682 0.171341i
\(546\) 0 0
\(547\) 11.0000 + 11.0000i 0.470326 + 0.470326i 0.902020 0.431694i \(-0.142084\pi\)
−0.431694 + 0.902020i \(0.642084\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.0000 24.0000i 1.02058 1.02058i
\(554\) 0 0
\(555\) −2.00000 4.00000i −0.0848953 0.169791i
\(556\) 0 0
\(557\) −27.0000 + 27.0000i −1.14403 + 1.14403i −0.156320 + 0.987706i \(0.549963\pi\)
−0.987706 + 0.156320i \(0.950037\pi\)
\(558\) 0 0
\(559\) 30.0000 1.26886
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −33.0000 + 33.0000i −1.39078 + 1.39078i −0.567213 + 0.823571i \(0.691978\pi\)
−0.823571 + 0.567213i \(0.808022\pi\)
\(564\) 0 0
\(565\) −3.00000 + 9.00000i −0.126211 + 0.378633i
\(566\) 0 0
\(567\) 15.0000 15.0000i 0.629941 0.629941i
\(568\) 0 0
\(569\) 12.0000i 0.503066i −0.967849 0.251533i \(-0.919065\pi\)
0.967849 0.251533i \(-0.0809347\pi\)
\(570\) 0 0
\(571\) −34.0000 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(572\) 0 0
\(573\) −14.0000 14.0000i −0.584858 0.584858i
\(574\) 0 0
\(575\) 7.00000 1.00000i 0.291920 0.0417029i
\(576\) 0 0
\(577\) −19.0000 19.0000i −0.790980 0.790980i 0.190673 0.981654i \(-0.438933\pi\)
−0.981654 + 0.190673i \(0.938933\pi\)
\(578\) 0 0
\(579\) 30.0000i 1.24676i
\(580\) 0 0
\(581\) 30.0000i 1.24461i
\(582\) 0 0
\(583\) −10.0000 10.0000i −0.414158 0.414158i
\(584\) 0 0
\(585\) −3.00000 + 9.00000i −0.124035 + 0.372104i
\(586\) 0 0
\(587\) −23.0000 23.0000i −0.949312 0.949312i 0.0494643 0.998776i \(-0.484249\pi\)
−0.998776 + 0.0494643i \(0.984249\pi\)
\(588\) 0 0
\(589\) 40.0000 1.64817
\(590\) 0 0
\(591\) 26.0000i 1.06950i
\(592\) 0 0
\(593\) −7.00000 + 7.00000i −0.287456 + 0.287456i −0.836073 0.548618i \(-0.815154\pi\)
0.548618 + 0.836073i \(0.315154\pi\)
\(594\) 0 0
\(595\) 12.0000 6.00000i 0.491952 0.245976i
\(596\) 0 0
\(597\) −16.0000 + 16.0000i −0.654836 + 0.654836i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 1.00000 1.00000i 0.0407231 0.0407231i
\(604\) 0 0
\(605\) −14.0000 + 7.00000i −0.569181 + 0.284590i
\(606\) 0 0
\(607\) 5.00000 5.00000i 0.202944 0.202944i −0.598316 0.801260i \(-0.704163\pi\)
0.801260 + 0.598316i \(0.204163\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.0000 −0.728202
\(612\) 0 0
\(613\) −15.0000 15.0000i −0.605844 0.605844i 0.336013 0.941857i \(-0.390921\pi\)
−0.941857 + 0.336013i \(0.890921\pi\)
\(614\) 0 0
\(615\) −10.0000 + 30.0000i −0.403239 + 1.20972i
\(616\) 0 0
\(617\) −13.0000 13.0000i −0.523360 0.523360i 0.395224 0.918585i \(-0.370667\pi\)
−0.918585 + 0.395224i \(0.870667\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i 0.970485 + 0.241160i \(0.0775280\pi\)
−0.970485 + 0.241160i \(0.922472\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) 0 0
\(623\) −48.0000 48.0000i −1.92308 1.92308i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 8.00000 + 8.00000i 0.319489 + 0.319489i
\(628\) 0 0
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) 14.0000i 0.557331i −0.960388 0.278666i \(-0.910108\pi\)
0.960388 0.278666i \(-0.0898921\pi\)
\(632\) 0 0
\(633\) 14.0000 14.0000i 0.556450 0.556450i
\(634\) 0 0
\(635\) −7.00000 + 21.0000i −0.277787 + 0.833360i
\(636\) 0 0
\(637\) 33.0000 33.0000i 1.30751 1.30751i
\(638\) 0 0
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 27.0000 27.0000i 1.06478 1.06478i 0.0670247 0.997751i \(-0.478649\pi\)
0.997751 0.0670247i \(-0.0213506\pi\)
\(644\) 0 0
\(645\) 10.0000 + 20.0000i 0.393750 + 0.787499i
\(646\) 0 0
\(647\) −29.0000 + 29.0000i −1.14011 + 1.14011i −0.151678 + 0.988430i \(0.548468\pi\)
−0.988430 + 0.151678i \(0.951532\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 60.0000 2.35159
\(652\) 0 0
\(653\) −1.00000 1.00000i −0.0391330 0.0391330i 0.687270 0.726403i \(-0.258809\pi\)
−0.726403 + 0.687270i \(0.758809\pi\)
\(654\) 0 0
\(655\) 20.0000 10.0000i 0.781465 0.390732i
\(656\) 0 0
\(657\) −1.00000 1.00000i −0.0390137 0.0390137i
\(658\) 0 0
\(659\) 36.0000i 1.40236i −0.712984 0.701180i \(-0.752657\pi\)
0.712984 0.701180i \(-0.247343\pi\)
\(660\) 0 0
\(661\) 30.0000i 1.16686i 0.812162 + 0.583432i \(0.198291\pi\)
−0.812162 + 0.583432i \(0.801709\pi\)
\(662\) 0 0
\(663\) −6.00000 6.00000i −0.233021 0.233021i
\(664\) 0 0
\(665\) 36.0000 + 12.0000i 1.39602 + 0.465340i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) −3.00000 + 3.00000i −0.115642 + 0.115642i −0.762560 0.646918i \(-0.776058\pi\)
0.646918 + 0.762560i \(0.276058\pi\)
\(674\) 0 0
\(675\) −28.0000 + 4.00000i −1.07772 + 0.153960i
\(676\) 0 0
\(677\) 3.00000 3.00000i 0.115299 0.115299i −0.647103 0.762402i \(-0.724020\pi\)
0.762402 + 0.647103i \(0.224020\pi\)
\(678\) 0 0
\(679\) −18.0000 −0.690777
\(680\) 0 0
\(681\) 10.0000 0.383201
\(682\) 0 0
\(683\) −11.0000 + 11.0000i −0.420903 + 0.420903i −0.885515 0.464611i \(-0.846194\pi\)
0.464611 + 0.885515i \(0.346194\pi\)
\(684\) 0 0
\(685\) 33.0000 + 11.0000i 1.26087 + 0.420288i
\(686\) 0 0
\(687\) 8.00000 8.00000i 0.305219 0.305219i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) −14.0000 −0.532585 −0.266293 0.963892i \(-0.585799\pi\)
−0.266293 + 0.963892i \(0.585799\pi\)
\(692\) 0 0
\(693\) −6.00000 6.00000i −0.227921 0.227921i
\(694\) 0 0
\(695\) −12.0000 24.0000i −0.455186 0.910372i
\(696\) 0 0
\(697\) 10.0000 + 10.0000i 0.378777 + 0.378777i
\(698\) 0 0
\(699\) 42.0000i 1.58859i
\(700\) 0 0
\(701\) 34.0000i 1.28416i 0.766637 + 0.642081i \(0.221929\pi\)
−0.766637 + 0.642081i \(0.778071\pi\)
\(702\) 0 0
\(703\) −4.00000 4.00000i −0.150863 0.150863i
\(704\) 0 0
\(705\) −6.00000 12.0000i −0.225973 0.451946i
\(706\) 0 0
\(707\) −18.0000 18.0000i −0.676960 0.676960i
\(708\) 0 0
\(709\) 48.0000 1.80268 0.901339 0.433114i \(-0.142585\pi\)
0.901339 + 0.433114i \(0.142585\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) 10.0000 10.0000i 0.374503 0.374503i
\(714\) 0 0
\(715\) −18.0000 6.00000i −0.673162 0.224387i
\(716\) 0 0
\(717\) −16.0000 + 16.0000i −0.597531 + 0.597531i
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 54.0000 2.01107
\(722\) 0 0
\(723\) 2.00000 2.00000i 0.0743808 0.0743808i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.00000 3.00000i 0.111264 0.111264i −0.649283 0.760547i \(-0.724931\pi\)
0.760547 + 0.649283i \(0.224931\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) 27.0000 + 27.0000i 0.997268 + 0.997268i 0.999996 0.00272852i \(-0.000868517\pi\)
−0.00272852 + 0.999996i \(0.500869\pi\)
\(734\) 0 0
\(735\) 33.0000 + 11.0000i 1.21722 + 0.405741i
\(736\) 0 0
\(737\) 2.00000 + 2.00000i 0.0736709 + 0.0736709i
\(738\) 0 0
\(739\) 28.0000i 1.03000i −0.857191 0.514998i \(-0.827793\pi\)
0.857191 0.514998i \(-0.172207\pi\)
\(740\) 0 0
\(741\) 24.0000i 0.881662i
\(742\) 0 0
\(743\) 21.0000 + 21.0000i 0.770415 + 0.770415i 0.978179 0.207764i \(-0.0666185\pi\)
−0.207764 + 0.978179i \(0.566619\pi\)
\(744\) 0 0
\(745\) −8.00000 + 4.00000i −0.293097 + 0.146549i
\(746\) 0 0
\(747\) −5.00000 5.00000i −0.182940 0.182940i
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) 2.00000i 0.0729810i −0.999334 0.0364905i \(-0.988382\pi\)
0.999334 0.0364905i \(-0.0116179\pi\)
\(752\) 0 0
\(753\) −6.00000 + 6.00000i −0.218652 + 0.218652i
\(754\) 0 0
\(755\) −6.00000 12.0000i −0.218362 0.436725i
\(756\) 0 0
\(757\) 19.0000 19.0000i 0.690567 0.690567i −0.271790 0.962357i \(-0.587616\pi\)
0.962357 + 0.271790i \(0.0876156\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 12.0000 12.0000i 0.434429 0.434429i
\(764\) 0 0
\(765\) −1.00000 + 3.00000i −0.0361551 + 0.108465i
\(766\) 0 0
\(767\) −36.0000 + 36.0000i −1.29988 + 1.29988i
\(768\) 0 0
\(769\) 8.00000i 0.288487i −0.989542 0.144244i \(-0.953925\pi\)
0.989542 0.144244i \(-0.0460749\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) 17.0000 + 17.0000i 0.611448 + 0.611448i 0.943323 0.331876i \(-0.107681\pi\)
−0.331876 + 0.943323i \(0.607681\pi\)
\(774\) 0 0
\(775\) −40.0000 30.0000i −1.43684 1.07763i
\(776\) 0 0
\(777\) −6.00000 6.00000i −0.215249 0.215249i
\(778\) 0 0
\(779\) 40.0000i 1.43315i
\(780\) 0 0
\(781\) 4.00000i 0.143131i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.00000 3.00000i 0.0356915 0.107075i
\(786\) 0 0
\(787\) 31.0000 + 31.0000i 1.10503 + 1.10503i 0.993794 + 0.111237i \(0.0354812\pi\)
0.111237 + 0.993794i \(0.464519\pi\)
\(788\) 0 0
\(789\) 22.0000 0.783221