Properties

Label 1280.2.n.b.767.1
Level $1280$
Weight $2$
Character 1280.767
Analytic conductor $10.221$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(767,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 767.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.767
Dual form 1280.2.n.b.1023.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{3} +(1.00000 + 2.00000i) q^{5} +(2.00000 - 2.00000i) q^{7} +5.00000i q^{9} +O(q^{10})\) \(q+(-2.00000 - 2.00000i) q^{3} +(1.00000 + 2.00000i) q^{5} +(2.00000 - 2.00000i) q^{7} +5.00000i q^{9} +4.00000i q^{11} +(-3.00000 + 3.00000i) q^{13} +(2.00000 - 6.00000i) q^{15} +(-3.00000 - 3.00000i) q^{17} -8.00000 q^{21} +(-6.00000 - 6.00000i) q^{23} +(-3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} -2.00000i q^{29} -4.00000i q^{31} +(8.00000 - 8.00000i) q^{33} +(6.00000 + 2.00000i) q^{35} +(-3.00000 - 3.00000i) q^{37} +12.0000 q^{39} +(-6.00000 - 6.00000i) q^{43} +(-10.0000 + 5.00000i) q^{45} +(-6.00000 + 6.00000i) q^{47} -1.00000i q^{49} +12.0000i q^{51} +(-3.00000 + 3.00000i) q^{53} +(-8.00000 + 4.00000i) q^{55} -8.00000 q^{59} -6.00000 q^{61} +(10.0000 + 10.0000i) q^{63} +(-9.00000 - 3.00000i) q^{65} +(6.00000 - 6.00000i) q^{67} +24.0000i q^{69} +12.0000i q^{71} +(5.00000 - 5.00000i) q^{73} +(14.0000 - 2.00000i) q^{75} +(8.00000 + 8.00000i) q^{77} -8.00000 q^{79} -1.00000 q^{81} +(-6.00000 - 6.00000i) q^{83} +(3.00000 - 9.00000i) q^{85} +(-4.00000 + 4.00000i) q^{87} +12.0000i q^{91} +(-8.00000 + 8.00000i) q^{93} +(11.0000 + 11.0000i) q^{97} -20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{3} + 2 q^{5} + 4 q^{7} - 6 q^{13} + 4 q^{15} - 6 q^{17} - 16 q^{21} - 12 q^{23} - 6 q^{25} + 8 q^{27} + 16 q^{33} + 12 q^{35} - 6 q^{37} + 24 q^{39} - 12 q^{43} - 20 q^{45} - 12 q^{47} - 6 q^{53} - 16 q^{55} - 16 q^{59} - 12 q^{61} + 20 q^{63} - 18 q^{65} + 12 q^{67} + 10 q^{73} + 28 q^{75} + 16 q^{77} - 16 q^{79} - 2 q^{81} - 12 q^{83} + 6 q^{85} - 8 q^{87} - 16 q^{93} + 22 q^{97} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 2.00000i −1.15470 1.15470i −0.985599 0.169102i \(-0.945913\pi\)
−0.169102 0.985599i \(-0.554087\pi\)
\(4\) 0 0
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 2.00000 2.00000i 0.755929 0.755929i −0.219650 0.975579i \(-0.570491\pi\)
0.975579 + 0.219650i \(0.0704915\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) −3.00000 + 3.00000i −0.832050 + 0.832050i −0.987797 0.155747i \(-0.950222\pi\)
0.155747 + 0.987797i \(0.450222\pi\)
\(14\) 0 0
\(15\) 2.00000 6.00000i 0.516398 1.54919i
\(16\) 0 0
\(17\) −3.00000 3.00000i −0.727607 0.727607i 0.242536 0.970143i \(-0.422021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −8.00000 −1.74574
\(22\) 0 0
\(23\) −6.00000 6.00000i −1.25109 1.25109i −0.955233 0.295853i \(-0.904396\pi\)
−0.295853 0.955233i \(-0.595604\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) 2.00000i 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 0 0
\(33\) 8.00000 8.00000i 1.39262 1.39262i
\(34\) 0 0
\(35\) 6.00000 + 2.00000i 1.01419 + 0.338062i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 12.0000 1.92154
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −6.00000 6.00000i −0.914991 0.914991i 0.0816682 0.996660i \(-0.473975\pi\)
−0.996660 + 0.0816682i \(0.973975\pi\)
\(44\) 0 0
\(45\) −10.0000 + 5.00000i −1.49071 + 0.745356i
\(46\) 0 0
\(47\) −6.00000 + 6.00000i −0.875190 + 0.875190i −0.993032 0.117842i \(-0.962402\pi\)
0.117842 + 0.993032i \(0.462402\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 12.0000i 1.68034i
\(52\) 0 0
\(53\) −3.00000 + 3.00000i −0.412082 + 0.412082i −0.882463 0.470381i \(-0.844116\pi\)
0.470381 + 0.882463i \(0.344116\pi\)
\(54\) 0 0
\(55\) −8.00000 + 4.00000i −1.07872 + 0.539360i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 10.0000 + 10.0000i 1.25988 + 1.25988i
\(64\) 0 0
\(65\) −9.00000 3.00000i −1.11631 0.372104i
\(66\) 0 0
\(67\) 6.00000 6.00000i 0.733017 0.733017i −0.238200 0.971216i \(-0.576557\pi\)
0.971216 + 0.238200i \(0.0765572\pi\)
\(68\) 0 0
\(69\) 24.0000i 2.88926i
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 5.00000 5.00000i 0.585206 0.585206i −0.351123 0.936329i \(-0.614200\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 0 0
\(75\) 14.0000 2.00000i 1.61658 0.230940i
\(76\) 0 0
\(77\) 8.00000 + 8.00000i 0.911685 + 0.911685i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −6.00000 6.00000i −0.658586 0.658586i 0.296460 0.955045i \(-0.404194\pi\)
−0.955045 + 0.296460i \(0.904194\pi\)
\(84\) 0 0
\(85\) 3.00000 9.00000i 0.325396 0.976187i
\(86\) 0 0
\(87\) −4.00000 + 4.00000i −0.428845 + 0.428845i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 12.0000i 1.25794i
\(92\) 0 0
\(93\) −8.00000 + 8.00000i −0.829561 + 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.0000 + 11.0000i 1.11688 + 1.11688i 0.992196 + 0.124684i \(0.0397918\pi\)
0.124684 + 0.992196i \(0.460208\pi\)
\(98\) 0 0
\(99\) −20.0000 −2.01008
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 2.00000 + 2.00000i 0.197066 + 0.197066i 0.798741 0.601675i \(-0.205500\pi\)
−0.601675 + 0.798741i \(0.705500\pi\)
\(104\) 0 0
\(105\) −8.00000 16.0000i −0.780720 1.56144i
\(106\) 0 0
\(107\) −6.00000 + 6.00000i −0.580042 + 0.580042i −0.934915 0.354873i \(-0.884524\pi\)
0.354873 + 0.934915i \(0.384524\pi\)
\(108\) 0 0
\(109\) 12.0000i 1.14939i −0.818367 0.574696i \(-0.805120\pi\)
0.818367 0.574696i \(-0.194880\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) −9.00000 + 9.00000i −0.846649 + 0.846649i −0.989713 0.143065i \(-0.954304\pi\)
0.143065 + 0.989713i \(0.454304\pi\)
\(114\) 0 0
\(115\) 6.00000 18.0000i 0.559503 1.67851i
\(116\) 0 0
\(117\) −15.0000 15.0000i −1.38675 1.38675i
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) −2.00000 + 2.00000i −0.177471 + 0.177471i −0.790253 0.612781i \(-0.790051\pi\)
0.612781 + 0.790253i \(0.290051\pi\)
\(128\) 0 0
\(129\) 24.0000i 2.11308i
\(130\) 0 0
\(131\) 4.00000i 0.349482i 0.984614 + 0.174741i \(0.0559088\pi\)
−0.984614 + 0.174741i \(0.944091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 12.0000 + 4.00000i 1.03280 + 0.344265i
\(136\) 0 0
\(137\) 15.0000 + 15.0000i 1.28154 + 1.28154i 0.939793 + 0.341743i \(0.111017\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 24.0000 2.02116
\(142\) 0 0
\(143\) −12.0000 12.0000i −1.00349 1.00349i
\(144\) 0 0
\(145\) 4.00000 2.00000i 0.332182 0.166091i
\(146\) 0 0
\(147\) −2.00000 + 2.00000i −0.164957 + 0.164957i
\(148\) 0 0
\(149\) 4.00000i 0.327693i −0.986486 0.163846i \(-0.947610\pi\)
0.986486 0.163846i \(-0.0523901\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) 15.0000 15.0000i 1.21268 1.21268i
\(154\) 0 0
\(155\) 8.00000 4.00000i 0.642575 0.321288i
\(156\) 0 0
\(157\) −3.00000 3.00000i −0.239426 0.239426i 0.577186 0.816612i \(-0.304151\pi\)
−0.816612 + 0.577186i \(0.804151\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 6.00000 + 6.00000i 0.469956 + 0.469956i 0.901900 0.431944i \(-0.142172\pi\)
−0.431944 + 0.901900i \(0.642172\pi\)
\(164\) 0 0
\(165\) 24.0000 + 8.00000i 1.86840 + 0.622799i
\(166\) 0 0
\(167\) 6.00000 6.00000i 0.464294 0.464294i −0.435766 0.900060i \(-0.643522\pi\)
0.900060 + 0.435766i \(0.143522\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.00000 + 7.00000i −0.532200 + 0.532200i −0.921227 0.389026i \(-0.872811\pi\)
0.389026 + 0.921227i \(0.372811\pi\)
\(174\) 0 0
\(175\) 2.00000 + 14.0000i 0.151186 + 1.05830i
\(176\) 0 0
\(177\) 16.0000 + 16.0000i 1.20263 + 1.20263i
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) 12.0000 + 12.0000i 0.887066 + 0.887066i
\(184\) 0 0
\(185\) 3.00000 9.00000i 0.220564 0.661693i
\(186\) 0 0
\(187\) 12.0000 12.0000i 0.877527 0.877527i
\(188\) 0 0
\(189\) 16.0000i 1.16383i
\(190\) 0 0
\(191\) 12.0000i 0.868290i −0.900843 0.434145i \(-0.857051\pi\)
0.900843 0.434145i \(-0.142949\pi\)
\(192\) 0 0
\(193\) 13.0000 13.0000i 0.935760 0.935760i −0.0622972 0.998058i \(-0.519843\pi\)
0.998058 + 0.0622972i \(0.0198427\pi\)
\(194\) 0 0
\(195\) 12.0000 + 24.0000i 0.859338 + 1.71868i
\(196\) 0 0
\(197\) 15.0000 + 15.0000i 1.06871 + 1.06871i 0.997459 + 0.0712470i \(0.0226979\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) −4.00000 4.00000i −0.280745 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 30.0000 30.0000i 2.08514 2.08514i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 0 0
\(213\) 24.0000 24.0000i 1.64445 1.64445i
\(214\) 0 0
\(215\) 6.00000 18.0000i 0.409197 1.22759i
\(216\) 0 0
\(217\) −8.00000 8.00000i −0.543075 0.543075i
\(218\) 0 0
\(219\) −20.0000 −1.35147
\(220\) 0 0
\(221\) 18.0000 1.21081
\(222\) 0 0
\(223\) −14.0000 14.0000i −0.937509 0.937509i 0.0606498 0.998159i \(-0.480683\pi\)
−0.998159 + 0.0606498i \(0.980683\pi\)
\(224\) 0 0
\(225\) −20.0000 15.0000i −1.33333 1.00000i
\(226\) 0 0
\(227\) 2.00000 2.00000i 0.132745 0.132745i −0.637613 0.770357i \(-0.720078\pi\)
0.770357 + 0.637613i \(0.220078\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 32.0000i 2.10545i
\(232\) 0 0
\(233\) 3.00000 3.00000i 0.196537 0.196537i −0.601977 0.798513i \(-0.705620\pi\)
0.798513 + 0.601977i \(0.205620\pi\)
\(234\) 0 0
\(235\) −18.0000 6.00000i −1.17419 0.391397i
\(236\) 0 0
\(237\) 16.0000 + 16.0000i 1.03931 + 1.03931i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −10.0000 10.0000i −0.641500 0.641500i
\(244\) 0 0
\(245\) 2.00000 1.00000i 0.127775 0.0638877i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 24.0000i 1.52094i
\(250\) 0 0
\(251\) 4.00000i 0.252478i −0.992000 0.126239i \(-0.959709\pi\)
0.992000 0.126239i \(-0.0402906\pi\)
\(252\) 0 0
\(253\) 24.0000 24.0000i 1.50887 1.50887i
\(254\) 0 0
\(255\) −24.0000 + 12.0000i −1.50294 + 0.751469i
\(256\) 0 0
\(257\) −9.00000 9.00000i −0.561405 0.561405i 0.368302 0.929706i \(-0.379939\pi\)
−0.929706 + 0.368302i \(0.879939\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 0 0
\(263\) 6.00000 + 6.00000i 0.369976 + 0.369976i 0.867468 0.497492i \(-0.165746\pi\)
−0.497492 + 0.867468i \(0.665746\pi\)
\(264\) 0 0
\(265\) −9.00000 3.00000i −0.552866 0.184289i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.00000i 0.243884i −0.992537 0.121942i \(-0.961088\pi\)
0.992537 0.121942i \(-0.0389122\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i −0.931214 0.364474i \(-0.881249\pi\)
0.931214 0.364474i \(-0.118751\pi\)
\(272\) 0 0
\(273\) 24.0000 24.0000i 1.45255 1.45255i
\(274\) 0 0
\(275\) −16.0000 12.0000i −0.964836 0.723627i
\(276\) 0 0
\(277\) −21.0000 21.0000i −1.26177 1.26177i −0.950236 0.311532i \(-0.899158\pi\)
−0.311532 0.950236i \(-0.600842\pi\)
\(278\) 0 0
\(279\) 20.0000 1.19737
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 6.00000 + 6.00000i 0.356663 + 0.356663i 0.862581 0.505918i \(-0.168846\pi\)
−0.505918 + 0.862581i \(0.668846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 44.0000i 2.57933i
\(292\) 0 0
\(293\) 9.00000 9.00000i 0.525786 0.525786i −0.393527 0.919313i \(-0.628745\pi\)
0.919313 + 0.393527i \(0.128745\pi\)
\(294\) 0 0
\(295\) −8.00000 16.0000i −0.465778 0.931556i
\(296\) 0 0
\(297\) 16.0000 + 16.0000i 0.928414 + 0.928414i
\(298\) 0 0
\(299\) 36.0000 2.08193
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 0 0
\(303\) 8.00000 + 8.00000i 0.459588 + 0.459588i
\(304\) 0 0
\(305\) −6.00000 12.0000i −0.343559 0.687118i
\(306\) 0 0
\(307\) −18.0000 + 18.0000i −1.02731 + 1.02731i −0.0276979 + 0.999616i \(0.508818\pi\)
−0.999616 + 0.0276979i \(0.991182\pi\)
\(308\) 0 0
\(309\) 8.00000i 0.455104i
\(310\) 0 0
\(311\) 12.0000i 0.680458i 0.940343 + 0.340229i \(0.110505\pi\)
−0.940343 + 0.340229i \(0.889495\pi\)
\(312\) 0 0
\(313\) 1.00000 1.00000i 0.0565233 0.0565233i −0.678280 0.734803i \(-0.737274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) −10.0000 + 30.0000i −0.563436 + 1.69031i
\(316\) 0 0
\(317\) 7.00000 + 7.00000i 0.393159 + 0.393159i 0.875812 0.482653i \(-0.160327\pi\)
−0.482653 + 0.875812i \(0.660327\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3.00000 21.0000i −0.166410 1.16487i
\(326\) 0 0
\(327\) −24.0000 + 24.0000i −1.32720 + 1.32720i
\(328\) 0 0
\(329\) 24.0000i 1.32316i
\(330\) 0 0
\(331\) 12.0000i 0.659580i 0.944054 + 0.329790i \(0.106978\pi\)
−0.944054 + 0.329790i \(0.893022\pi\)
\(332\) 0 0
\(333\) 15.0000 15.0000i 0.821995 0.821995i
\(334\) 0 0
\(335\) 18.0000 + 6.00000i 0.983445 + 0.327815i
\(336\) 0 0
\(337\) −7.00000 7.00000i −0.381314 0.381314i 0.490261 0.871576i \(-0.336901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 36.0000 1.95525
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) −48.0000 + 24.0000i −2.58423 + 1.29212i
\(346\) 0 0
\(347\) −10.0000 + 10.0000i −0.536828 + 0.536828i −0.922596 0.385768i \(-0.873937\pi\)
0.385768 + 0.922596i \(0.373937\pi\)
\(348\) 0 0
\(349\) 30.0000i 1.60586i −0.596071 0.802932i \(-0.703272\pi\)
0.596071 0.802932i \(-0.296728\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 9.00000 9.00000i 0.479022 0.479022i −0.425797 0.904819i \(-0.640006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) −24.0000 + 12.0000i −1.27379 + 0.636894i
\(356\) 0 0
\(357\) 24.0000 + 24.0000i 1.27021 + 1.27021i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 10.0000 + 10.0000i 0.524864 + 0.524864i
\(364\) 0 0
\(365\) 15.0000 + 5.00000i 0.785136 + 0.261712i
\(366\) 0 0
\(367\) −26.0000 + 26.0000i −1.35719 + 1.35719i −0.479824 + 0.877365i \(0.659300\pi\)
−0.877365 + 0.479824i \(0.840700\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) −9.00000 + 9.00000i −0.466002 + 0.466002i −0.900617 0.434614i \(-0.856885\pi\)
0.434614 + 0.900617i \(0.356885\pi\)
\(374\) 0 0
\(375\) 18.0000 + 26.0000i 0.929516 + 1.34263i
\(376\) 0 0
\(377\) 6.00000 + 6.00000i 0.309016 + 0.309016i
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −6.00000 6.00000i −0.306586 0.306586i 0.536998 0.843584i \(-0.319558\pi\)
−0.843584 + 0.536998i \(0.819558\pi\)
\(384\) 0 0
\(385\) −8.00000 + 24.0000i −0.407718 + 1.22315i
\(386\) 0 0
\(387\) 30.0000 30.0000i 1.52499 1.52499i
\(388\) 0 0
\(389\) 4.00000i 0.202808i 0.994845 + 0.101404i \(0.0323335\pi\)
−0.994845 + 0.101404i \(0.967667\pi\)
\(390\) 0 0
\(391\) 36.0000i 1.82060i
\(392\) 0 0
\(393\) 8.00000 8.00000i 0.403547 0.403547i
\(394\) 0 0
\(395\) −8.00000 16.0000i −0.402524 0.805047i
\(396\) 0 0
\(397\) −15.0000 15.0000i −0.752828 0.752828i 0.222178 0.975006i \(-0.428683\pi\)
−0.975006 + 0.222178i \(0.928683\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 12.0000 + 12.0000i 0.597763 + 0.597763i
\(404\) 0 0
\(405\) −1.00000 2.00000i −0.0496904 0.0993808i
\(406\) 0 0
\(407\) 12.0000 12.0000i 0.594818 0.594818i
\(408\) 0 0
\(409\) 30.0000i 1.48340i 0.670729 + 0.741702i \(0.265981\pi\)
−0.670729 + 0.741702i \(0.734019\pi\)
\(410\) 0 0
\(411\) 60.0000i 2.95958i
\(412\) 0 0
\(413\) −16.0000 + 16.0000i −0.787309 + 0.787309i
\(414\) 0 0
\(415\) 6.00000 18.0000i 0.294528 0.883585i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) −30.0000 30.0000i −1.45865 1.45865i
\(424\) 0 0
\(425\) 21.0000 3.00000i 1.01865 0.145521i
\(426\) 0 0
\(427\) −12.0000 + 12.0000i −0.580721 + 0.580721i
\(428\) 0 0
\(429\) 48.0000i 2.31746i
\(430\) 0 0
\(431\) 36.0000i 1.73406i 0.498257 + 0.867029i \(0.333974\pi\)
−0.498257 + 0.867029i \(0.666026\pi\)
\(432\) 0 0
\(433\) 11.0000 11.0000i 0.528626 0.528626i −0.391536 0.920163i \(-0.628056\pi\)
0.920163 + 0.391536i \(0.128056\pi\)
\(434\) 0 0
\(435\) −12.0000 4.00000i −0.575356 0.191785i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) −2.00000 2.00000i −0.0950229 0.0950229i 0.657997 0.753020i \(-0.271404\pi\)
−0.753020 + 0.657997i \(0.771404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −8.00000 + 8.00000i −0.378387 + 0.378387i
\(448\) 0 0
\(449\) 6.00000i 0.283158i −0.989927 0.141579i \(-0.954782\pi\)
0.989927 0.141579i \(-0.0452178\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −24.0000 + 24.0000i −1.12762 + 1.12762i
\(454\) 0 0
\(455\) −24.0000 + 12.0000i −1.12514 + 0.562569i
\(456\) 0 0
\(457\) 1.00000 + 1.00000i 0.0467780 + 0.0467780i 0.730109 0.683331i \(-0.239469\pi\)
−0.683331 + 0.730109i \(0.739469\pi\)
\(458\) 0 0
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) 14.0000 + 14.0000i 0.650635 + 0.650635i 0.953146 0.302511i \(-0.0978248\pi\)
−0.302511 + 0.953146i \(0.597825\pi\)
\(464\) 0 0
\(465\) −24.0000 8.00000i −1.11297 0.370991i
\(466\) 0 0
\(467\) −30.0000 + 30.0000i −1.38823 + 1.38823i −0.559205 + 0.829029i \(0.688894\pi\)
−0.829029 + 0.559205i \(0.811106\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 12.0000i 0.552931i
\(472\) 0 0
\(473\) 24.0000 24.0000i 1.10352 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.0000 15.0000i −0.686803 0.686803i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 48.0000 + 48.0000i 2.18408 + 2.18408i
\(484\) 0 0
\(485\) −11.0000 + 33.0000i −0.499484 + 1.49845i
\(486\) 0 0
\(487\) 10.0000 10.0000i 0.453143 0.453143i −0.443253 0.896396i \(-0.646176\pi\)
0.896396 + 0.443253i \(0.146176\pi\)
\(488\) 0 0
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) 20.0000i 0.902587i −0.892375 0.451294i \(-0.850963\pi\)
0.892375 0.451294i \(-0.149037\pi\)
\(492\) 0 0
\(493\) −6.00000 + 6.00000i −0.270226 + 0.270226i
\(494\) 0 0
\(495\) −20.0000 40.0000i −0.898933 1.79787i
\(496\) 0 0
\(497\) 24.0000 + 24.0000i 1.07655 + 1.07655i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 0 0
\(503\) −6.00000 6.00000i −0.267527 0.267527i 0.560576 0.828103i \(-0.310580\pi\)
−0.828103 + 0.560576i \(0.810580\pi\)
\(504\) 0 0
\(505\) −4.00000 8.00000i −0.177998 0.355995i
\(506\) 0 0
\(507\) −10.0000 + 10.0000i −0.444116 + 0.444116i
\(508\) 0 0
\(509\) 34.0000i 1.50702i 0.657434 + 0.753512i \(0.271642\pi\)
−0.657434 + 0.753512i \(0.728358\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.00000 + 6.00000i −0.0881305 + 0.264392i
\(516\) 0 0
\(517\) −24.0000 24.0000i −1.05552 1.05552i
\(518\) 0 0
\(519\) 28.0000 1.22906
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 6.00000 + 6.00000i 0.262362 + 0.262362i 0.826013 0.563651i \(-0.190604\pi\)
−0.563651 + 0.826013i \(0.690604\pi\)
\(524\) 0 0
\(525\) 24.0000 32.0000i 1.04745 1.39659i
\(526\) 0 0
\(527\) −12.0000 + 12.0000i −0.522728 + 0.522728i
\(528\) 0 0
\(529\) 49.0000i 2.13043i
\(530\) 0 0
\(531\) 40.0000i 1.73585i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 6.00000i −0.778208 0.259403i
\(536\) 0 0
\(537\) −32.0000 32.0000i −1.38090 1.38090i
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −36.0000 −1.54776 −0.773880 0.633332i \(-0.781687\pi\)
−0.773880 + 0.633332i \(0.781687\pi\)
\(542\) 0 0
\(543\) 24.0000 + 24.0000i 1.02994 + 1.02994i
\(544\) 0 0
\(545\) 24.0000 12.0000i 1.02805 0.514024i
\(546\) 0 0
\(547\) −6.00000 + 6.00000i −0.256541 + 0.256541i −0.823646 0.567104i \(-0.808064\pi\)
0.567104 + 0.823646i \(0.308064\pi\)
\(548\) 0 0
\(549\) 30.0000i 1.28037i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −16.0000 + 16.0000i −0.680389 + 0.680389i
\(554\) 0 0
\(555\) −24.0000 + 12.0000i −1.01874 + 0.509372i
\(556\) 0 0
\(557\) −21.0000 21.0000i −0.889799 0.889799i 0.104705 0.994503i \(-0.466610\pi\)
−0.994503 + 0.104705i \(0.966610\pi\)
\(558\) 0 0
\(559\) 36.0000 1.52264
\(560\) 0 0
\(561\) −48.0000 −2.02656
\(562\) 0 0
\(563\) −10.0000 10.0000i −0.421450 0.421450i 0.464253 0.885703i \(-0.346323\pi\)
−0.885703 + 0.464253i \(0.846323\pi\)
\(564\) 0 0
\(565\) −27.0000 9.00000i −1.13590 0.378633i
\(566\) 0 0
\(567\) −2.00000 + 2.00000i −0.0839921 + 0.0839921i
\(568\) 0 0
\(569\) 30.0000i 1.25767i −0.777541 0.628833i \(-0.783533\pi\)
0.777541 0.628833i \(-0.216467\pi\)
\(570\) 0 0
\(571\) 12.0000i 0.502184i −0.967963 0.251092i \(-0.919210\pi\)
0.967963 0.251092i \(-0.0807897\pi\)
\(572\) 0 0
\(573\) −24.0000 + 24.0000i −1.00261 + 1.00261i
\(574\) 0 0
\(575\) 42.0000 6.00000i 1.75152 0.250217i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 0 0
\(579\) −52.0000 −2.16105
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) −12.0000 12.0000i −0.496989 0.496989i
\(584\) 0 0
\(585\) 15.0000 45.0000i 0.620174 1.86052i
\(586\) 0 0
\(587\) 6.00000 6.00000i 0.247647 0.247647i −0.572358 0.820004i \(-0.693971\pi\)
0.820004 + 0.572358i \(0.193971\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 60.0000i 2.46807i
\(592\) 0 0
\(593\) −15.0000 + 15.0000i −0.615976 + 0.615976i −0.944497 0.328521i \(-0.893450\pi\)
0.328521 + 0.944497i \(0.393450\pi\)
\(594\) 0 0
\(595\) −12.0000 24.0000i −0.491952 0.983904i
\(596\) 0 0
\(597\) 48.0000 + 48.0000i 1.96451 + 1.96451i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 30.0000 + 30.0000i 1.22169 + 1.22169i
\(604\) 0 0
\(605\) −5.00000 10.0000i −0.203279 0.406558i
\(606\) 0 0
\(607\) 2.00000 2.00000i 0.0811775 0.0811775i −0.665352 0.746530i \(-0.731719\pi\)
0.746530 + 0.665352i \(0.231719\pi\)
\(608\) 0 0
\(609\) 16.0000i 0.648353i
\(610\) 0 0
\(611\) 36.0000i 1.45640i
\(612\) 0 0
\(613\) 3.00000 3.00000i 0.121169 0.121169i −0.643922 0.765091i \(-0.722694\pi\)
0.765091 + 0.643922i \(0.222694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.0000 + 27.0000i 1.08698 + 1.08698i 0.995838 + 0.0911411i \(0.0290514\pi\)
0.0911411 + 0.995838i \(0.470949\pi\)
\(618\) 0 0
\(619\) 24.0000 0.964641 0.482321 0.875995i \(-0.339794\pi\)
0.482321 + 0.875995i \(0.339794\pi\)
\(620\) 0 0
\(621\) −48.0000 −1.92617
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.0000i 0.717707i
\(630\) 0 0
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) 0 0
\(633\) 24.0000 24.0000i 0.953914 0.953914i
\(634\) 0 0
\(635\) −6.00000 2.00000i −0.238103 0.0793676i
\(636\) 0 0
\(637\) 3.00000 + 3.00000i 0.118864 + 0.118864i
\(638\) 0 0
\(639\) −60.0000 −2.37356
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −30.0000 30.0000i −1.18308 1.18308i −0.978941 0.204144i \(-0.934559\pi\)
−0.204144 0.978941i \(-0.565441\pi\)
\(644\) 0 0
\(645\) −48.0000 + 24.0000i −1.89000 + 0.944999i
\(646\) 0 0
\(647\) 18.0000 18.0000i 0.707653 0.707653i −0.258388 0.966041i \(-0.583191\pi\)
0.966041 + 0.258388i \(0.0831913\pi\)
\(648\) 0 0
\(649\) 32.0000i 1.25611i
\(650\) 0 0
\(651\) 32.0000i 1.25418i
\(652\) 0 0
\(653\) 19.0000 19.0000i 0.743527 0.743527i −0.229728 0.973255i \(-0.573784\pi\)
0.973255 + 0.229728i \(0.0737835\pi\)
\(654\) 0 0
\(655\) −8.00000 + 4.00000i −0.312586 + 0.156293i
\(656\) 0 0
\(657\) 25.0000 + 25.0000i 0.975343 + 0.975343i
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 0 0
\(663\) −36.0000 36.0000i −1.39812 1.39812i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 + 12.0000i −0.464642 + 0.464642i
\(668\) 0 0
\(669\) 56.0000i 2.16509i
\(670\) 0 0
\(671\) 24.0000i 0.926510i
\(672\) 0 0
\(673\) −29.0000 + 29.0000i −1.11787 + 1.11787i −0.125814 + 0.992054i \(0.540154\pi\)
−0.992054 + 0.125814i \(0.959846\pi\)
\(674\) 0 0
\(675\) 4.00000 + 28.0000i 0.153960 + 1.07772i
\(676\) 0 0
\(677\) 7.00000 + 7.00000i 0.269032 + 0.269032i 0.828710 0.559678i \(-0.189075\pi\)
−0.559678 + 0.828710i \(0.689075\pi\)
\(678\) 0 0
\(679\) 44.0000 1.68857
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) 18.0000 + 18.0000i 0.688751 + 0.688751i 0.961956 0.273205i \(-0.0880837\pi\)
−0.273205 + 0.961956i \(0.588084\pi\)
\(684\) 0 0
\(685\) −15.0000 + 45.0000i −0.573121 + 1.71936i
\(686\) 0 0
\(687\) 12.0000 12.0000i 0.457829 0.457829i
\(688\) 0 0
\(689\) 18.0000i 0.685745i
\(690\) 0 0
\(691\) 12.0000i 0.456502i 0.973602 + 0.228251i \(0.0733006\pi\)
−0.973602 + 0.228251i \(0.926699\pi\)
\(692\) 0 0
\(693\) −40.0000 + 40.0000i −1.51947 + 1.51947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) −26.0000 −0.982006 −0.491003 0.871158i \(-0.663370\pi\)
−0.491003 + 0.871158i \(0.663370\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 + 48.0000i 0.903892 + 1.80778i
\(706\) 0 0
\(707\) −8.00000 + 8.00000i −0.300871 + 0.300871i
\(708\) 0 0
\(709\) 6.00000i 0.225335i −0.993633 0.112667i \(-0.964061\pi\)
0.993633 0.112667i \(-0.0359394\pi\)
\(710\) 0 0
\(711\) 40.0000i 1.50012i
\(712\) 0 0
\(713\) −24.0000 + 24.0000i −0.898807 + 0.898807i
\(714\) 0 0
\(715\) 12.0000 36.0000i 0.448775 1.34632i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.00000 + 6.00000i 0.297113 + 0.222834i
\(726\) 0 0
\(727\) 10.0000 10.0000i 0.370879 0.370879i −0.496918 0.867797i \(-0.665535\pi\)
0.867797 + 0.496918i \(0.165535\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 36.0000i 1.33151i
\(732\) 0 0
\(733\) 33.0000 33.0000i 1.21888 1.21888i 0.250859 0.968024i \(-0.419287\pi\)
0.968024 0.250859i \(-0.0807131\pi\)
\(734\) 0 0
\(735\) −6.00000 2.00000i −0.221313 0.0737711i
\(736\) 0 0
\(737\) 24.0000 + 24.0000i 0.884051 + 0.884051i
\(738\) 0 0
\(739\) 48.0000 1.76571 0.882854 0.469647i \(-0.155619\pi\)
0.882854 + 0.469647i \(0.155619\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.0000 + 30.0000i 1.10059 + 1.10059i 0.994339 + 0.106254i \(0.0338857\pi\)
0.106254 + 0.994339i \(0.466114\pi\)
\(744\) 0 0
\(745\) 8.00000 4.00000i 0.293097 0.146549i
\(746\) 0 0
\(747\) 30.0000 30.0000i 1.09764 1.09764i
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) 4.00000i 0.145962i 0.997333 + 0.0729810i \(0.0232513\pi\)
−0.997333 + 0.0729810i \(0.976749\pi\)
\(752\) 0 0
\(753\) −8.00000 + 8.00000i −0.291536 + 0.291536i
\(754\) 0 0
\(755\) 24.0000 12.0000i 0.873449 0.436725i
\(756\) 0 0
\(757\) 3.00000 + 3.00000i 0.109037 + 0.109037i 0.759520 0.650484i \(-0.225434\pi\)
−0.650484 + 0.759520i \(0.725434\pi\)
\(758\) 0 0
\(759\) −96.0000 −3.48458
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) −24.0000 24.0000i −0.868858 0.868858i
\(764\) 0 0
\(765\) 45.0000 + 15.0000i 1.62698 + 0.542326i
\(766\) 0 0
\(767\) 24.0000 24.0000i 0.866590 0.866590i
\(768\) 0 0
\(769\) 40.0000i 1.44244i −0.692708 0.721218i \(-0.743582\pi\)
0.692708 0.721218i \(-0.256418\pi\)
\(770\) 0 0
\(771\) 36.0000i 1.29651i
\(772\) 0 0
\(773\) −5.00000 + 5.00000i −0.179838 + 0.179838i −0.791285 0.611448i \(-0.790588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) 16.0000 + 12.0000i 0.574737 + 0.431053i
\(776\) 0 0
\(777\) 24.0000 + 24.0000i 0.860995 + 0.860995i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −48.0000 −1.71758
\(782\) 0 0
\(783\) −8.00000 8.00000i −0.285897 0.285897i
\(784\) 0 0
\(785\) 3.00000 9.00000i 0.107075 0.321224i
\(786\) 0 0
\(787\) 6.00000 6.00000i 0.213877 0.213877i −0.592035 0.805912i \(-0.701675\pi\)
0.805912 + 0.592035i \(0.201675\pi\)
\(788\) 0 0
\(789\) 24.0000i 0.854423i
\(790\) 0 0