Properties

Label 1280.2.f.i.129.6
Level $1280$
Weight $2$
Character 1280.129
Analytic conductor $10.221$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.6
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 1280.129
Dual form 1280.2.f.i.129.5

$q$-expansion

\(f(q)\) \(=\) \(q+1.70928 q^{3} +(-0.539189 + 2.17009i) q^{5} -2.63090i q^{7} -0.0783777 q^{9} +O(q^{10})\) \(q+1.70928 q^{3} +(-0.539189 + 2.17009i) q^{5} -2.63090i q^{7} -0.0783777 q^{9} +5.41855i q^{11} -6.34017 q^{13} +(-0.921622 + 3.70928i) q^{15} +3.41855i q^{17} +3.26180i q^{19} -4.49693i q^{21} +1.36910i q^{23} +(-4.41855 - 2.34017i) q^{25} -5.26180 q^{27} +2.00000i q^{29} -4.68035 q^{31} +9.26180i q^{33} +(5.70928 + 1.41855i) q^{35} +5.75872 q^{37} -10.8371 q^{39} +7.75872 q^{41} +4.44748 q^{43} +(0.0422604 - 0.170086i) q^{45} +4.78765i q^{47} +0.0783777 q^{49} +5.84324i q^{51} +1.65983 q^{53} +(-11.7587 - 2.92162i) q^{55} +5.57531i q^{57} +3.26180i q^{59} +2.49693i q^{61} +0.206204i q^{63} +(3.41855 - 13.7587i) q^{65} +7.86603 q^{67} +2.34017i q^{69} +6.15676 q^{71} -13.5753i q^{73} +(-7.55252 - 4.00000i) q^{75} +14.2557 q^{77} -12.6803 q^{79} -8.75872 q^{81} -14.9711 q^{83} +(-7.41855 - 1.84324i) q^{85} +3.41855i q^{87} -8.52359 q^{89} +16.6803i q^{91} -8.00000 q^{93} +(-7.07838 - 1.75872i) q^{95} -4.58145i q^{97} -0.424694i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 4 q^{3} + 6 q^{9} - 16 q^{13} - 12 q^{15} + 2 q^{25} - 16 q^{27} + 16 q^{31} + 20 q^{35} - 16 q^{37} - 8 q^{39} - 4 q^{41} + 28 q^{43} + 32 q^{45} - 6 q^{49} + 32 q^{53} - 20 q^{55} - 8 q^{65} + 20 q^{67} + 24 q^{71} - 44 q^{75} - 32 q^{79} - 2 q^{81} - 60 q^{83} - 16 q^{85} - 20 q^{89} - 48 q^{93} - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70928 0.986851 0.493425 0.869788i \(-0.335745\pi\)
0.493425 + 0.869788i \(0.335745\pi\)
\(4\) 0 0
\(5\) −0.539189 + 2.17009i −0.241133 + 0.970492i
\(6\) 0 0
\(7\) 2.63090i 0.994386i −0.867640 0.497193i \(-0.834364\pi\)
0.867640 0.497193i \(-0.165636\pi\)
\(8\) 0 0
\(9\) −0.0783777 −0.0261259
\(10\) 0 0
\(11\) 5.41855i 1.63375i 0.576812 + 0.816877i \(0.304297\pi\)
−0.576812 + 0.816877i \(0.695703\pi\)
\(12\) 0 0
\(13\) −6.34017 −1.75845 −0.879224 0.476409i \(-0.841938\pi\)
−0.879224 + 0.476409i \(0.841938\pi\)
\(14\) 0 0
\(15\) −0.921622 + 3.70928i −0.237962 + 0.957731i
\(16\) 0 0
\(17\) 3.41855i 0.829120i 0.910022 + 0.414560i \(0.136065\pi\)
−0.910022 + 0.414560i \(0.863935\pi\)
\(18\) 0 0
\(19\) 3.26180i 0.748307i 0.927367 + 0.374154i \(0.122067\pi\)
−0.927367 + 0.374154i \(0.877933\pi\)
\(20\) 0 0
\(21\) 4.49693i 0.981310i
\(22\) 0 0
\(23\) 1.36910i 0.285478i 0.989760 + 0.142739i \(0.0455909\pi\)
−0.989760 + 0.142739i \(0.954409\pi\)
\(24\) 0 0
\(25\) −4.41855 2.34017i −0.883710 0.468035i
\(26\) 0 0
\(27\) −5.26180 −1.01263
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −4.68035 −0.840615 −0.420307 0.907382i \(-0.638078\pi\)
−0.420307 + 0.907382i \(0.638078\pi\)
\(32\) 0 0
\(33\) 9.26180i 1.61227i
\(34\) 0 0
\(35\) 5.70928 + 1.41855i 0.965044 + 0.239779i
\(36\) 0 0
\(37\) 5.75872 0.946728 0.473364 0.880867i \(-0.343039\pi\)
0.473364 + 0.880867i \(0.343039\pi\)
\(38\) 0 0
\(39\) −10.8371 −1.73533
\(40\) 0 0
\(41\) 7.75872 1.21171 0.605855 0.795575i \(-0.292831\pi\)
0.605855 + 0.795575i \(0.292831\pi\)
\(42\) 0 0
\(43\) 4.44748 0.678234 0.339117 0.940744i \(-0.389872\pi\)
0.339117 + 0.940744i \(0.389872\pi\)
\(44\) 0 0
\(45\) 0.0422604 0.170086i 0.00629981 0.0253550i
\(46\) 0 0
\(47\) 4.78765i 0.698351i 0.937057 + 0.349175i \(0.113538\pi\)
−0.937057 + 0.349175i \(0.886462\pi\)
\(48\) 0 0
\(49\) 0.0783777 0.0111968
\(50\) 0 0
\(51\) 5.84324i 0.818218i
\(52\) 0 0
\(53\) 1.65983 0.227995 0.113997 0.993481i \(-0.463634\pi\)
0.113997 + 0.993481i \(0.463634\pi\)
\(54\) 0 0
\(55\) −11.7587 2.92162i −1.58555 0.393951i
\(56\) 0 0
\(57\) 5.57531i 0.738467i
\(58\) 0 0
\(59\) 3.26180i 0.424650i 0.977199 + 0.212325i \(0.0681035\pi\)
−0.977199 + 0.212325i \(0.931897\pi\)
\(60\) 0 0
\(61\) 2.49693i 0.319699i 0.987141 + 0.159849i \(0.0511009\pi\)
−0.987141 + 0.159849i \(0.948899\pi\)
\(62\) 0 0
\(63\) 0.206204i 0.0259792i
\(64\) 0 0
\(65\) 3.41855 13.7587i 0.424019 1.70656i
\(66\) 0 0
\(67\) 7.86603 0.960989 0.480494 0.876998i \(-0.340457\pi\)
0.480494 + 0.876998i \(0.340457\pi\)
\(68\) 0 0
\(69\) 2.34017i 0.281724i
\(70\) 0 0
\(71\) 6.15676 0.730672 0.365336 0.930876i \(-0.380954\pi\)
0.365336 + 0.930876i \(0.380954\pi\)
\(72\) 0 0
\(73\) 13.5753i 1.58887i −0.607350 0.794435i \(-0.707767\pi\)
0.607350 0.794435i \(-0.292233\pi\)
\(74\) 0 0
\(75\) −7.55252 4.00000i −0.872090 0.461880i
\(76\) 0 0
\(77\) 14.2557 1.62458
\(78\) 0 0
\(79\) −12.6803 −1.42665 −0.713325 0.700833i \(-0.752812\pi\)
−0.713325 + 0.700833i \(0.752812\pi\)
\(80\) 0 0
\(81\) −8.75872 −0.973192
\(82\) 0 0
\(83\) −14.9711 −1.64329 −0.821644 0.570001i \(-0.806943\pi\)
−0.821644 + 0.570001i \(0.806943\pi\)
\(84\) 0 0
\(85\) −7.41855 1.84324i −0.804655 0.199928i
\(86\) 0 0
\(87\) 3.41855i 0.366507i
\(88\) 0 0
\(89\) −8.52359 −0.903499 −0.451749 0.892145i \(-0.649200\pi\)
−0.451749 + 0.892145i \(0.649200\pi\)
\(90\) 0 0
\(91\) 16.6803i 1.74858i
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) −7.07838 1.75872i −0.726226 0.180441i
\(96\) 0 0
\(97\) 4.58145i 0.465176i −0.972575 0.232588i \(-0.925281\pi\)
0.972575 0.232588i \(-0.0747193\pi\)
\(98\) 0 0
\(99\) 0.424694i 0.0426833i
\(100\) 0 0
\(101\) 2.31351i 0.230203i 0.993354 + 0.115101i \(0.0367193\pi\)
−0.993354 + 0.115101i \(0.963281\pi\)
\(102\) 0 0
\(103\) 16.2062i 1.59684i 0.602098 + 0.798422i \(0.294332\pi\)
−0.602098 + 0.798422i \(0.705668\pi\)
\(104\) 0 0
\(105\) 9.75872 + 2.42469i 0.952354 + 0.236626i
\(106\) 0 0
\(107\) 15.6514 1.51308 0.756540 0.653948i \(-0.226888\pi\)
0.756540 + 0.653948i \(0.226888\pi\)
\(108\) 0 0
\(109\) 12.3402i 1.18197i −0.806681 0.590987i \(-0.798738\pi\)
0.806681 0.590987i \(-0.201262\pi\)
\(110\) 0 0
\(111\) 9.84324 0.934279
\(112\) 0 0
\(113\) 9.36069i 0.880580i −0.897856 0.440290i \(-0.854876\pi\)
0.897856 0.440290i \(-0.145124\pi\)
\(114\) 0 0
\(115\) −2.97107 0.738205i −0.277054 0.0688379i
\(116\) 0 0
\(117\) 0.496928 0.0459411
\(118\) 0 0
\(119\) 8.99386 0.824466
\(120\) 0 0
\(121\) −18.3607 −1.66915
\(122\) 0 0
\(123\) 13.2618 1.19578
\(124\) 0 0
\(125\) 7.46081 8.32684i 0.667315 0.744775i
\(126\) 0 0
\(127\) 1.95055i 0.173083i 0.996248 + 0.0865417i \(0.0275816\pi\)
−0.996248 + 0.0865417i \(0.972418\pi\)
\(128\) 0 0
\(129\) 7.60197 0.669316
\(130\) 0 0
\(131\) 15.5753i 1.36082i 0.732831 + 0.680410i \(0.238198\pi\)
−0.732831 + 0.680410i \(0.761802\pi\)
\(132\) 0 0
\(133\) 8.58145 0.744106
\(134\) 0 0
\(135\) 2.83710 11.4186i 0.244179 0.982752i
\(136\) 0 0
\(137\) 15.2039i 1.29896i 0.760379 + 0.649480i \(0.225013\pi\)
−0.760379 + 0.649480i \(0.774987\pi\)
\(138\) 0 0
\(139\) 2.58145i 0.218956i −0.993989 0.109478i \(-0.965082\pi\)
0.993989 0.109478i \(-0.0349179\pi\)
\(140\) 0 0
\(141\) 8.18342i 0.689168i
\(142\) 0 0
\(143\) 34.3545i 2.87287i
\(144\) 0 0
\(145\) −4.34017 1.07838i −0.360432 0.0895544i
\(146\) 0 0
\(147\) 0.133969 0.0110496
\(148\) 0 0
\(149\) 1.81658i 0.148820i 0.997228 + 0.0744101i \(0.0237074\pi\)
−0.997228 + 0.0744101i \(0.976293\pi\)
\(150\) 0 0
\(151\) 5.16290 0.420151 0.210075 0.977685i \(-0.432629\pi\)
0.210075 + 0.977685i \(0.432629\pi\)
\(152\) 0 0
\(153\) 0.267938i 0.0216615i
\(154\) 0 0
\(155\) 2.52359 10.1568i 0.202700 0.815810i
\(156\) 0 0
\(157\) 13.7587 1.09807 0.549033 0.835801i \(-0.314996\pi\)
0.549033 + 0.835801i \(0.314996\pi\)
\(158\) 0 0
\(159\) 2.83710 0.224997
\(160\) 0 0
\(161\) 3.60197 0.283875
\(162\) 0 0
\(163\) −6.29072 −0.492728 −0.246364 0.969177i \(-0.579236\pi\)
−0.246364 + 0.969177i \(0.579236\pi\)
\(164\) 0 0
\(165\) −20.0989 4.99386i −1.56470 0.388771i
\(166\) 0 0
\(167\) 3.89269i 0.301226i 0.988593 + 0.150613i \(0.0481247\pi\)
−0.988593 + 0.150613i \(0.951875\pi\)
\(168\) 0 0
\(169\) 27.1978 2.09214
\(170\) 0 0
\(171\) 0.255652i 0.0195502i
\(172\) 0 0
\(173\) 1.44521 0.109877 0.0549387 0.998490i \(-0.482504\pi\)
0.0549387 + 0.998490i \(0.482504\pi\)
\(174\) 0 0
\(175\) −6.15676 + 11.6248i −0.465407 + 0.878749i
\(176\) 0 0
\(177\) 5.57531i 0.419066i
\(178\) 0 0
\(179\) 11.9421i 0.892598i −0.894884 0.446299i \(-0.852742\pi\)
0.894884 0.446299i \(-0.147258\pi\)
\(180\) 0 0
\(181\) 15.3607i 1.14175i 0.821037 + 0.570876i \(0.193396\pi\)
−0.821037 + 0.570876i \(0.806604\pi\)
\(182\) 0 0
\(183\) 4.26794i 0.315495i
\(184\) 0 0
\(185\) −3.10504 + 12.4969i −0.228287 + 0.918792i
\(186\) 0 0
\(187\) −18.5236 −1.35458
\(188\) 0 0
\(189\) 13.8432i 1.00695i
\(190\) 0 0
\(191\) 25.3607 1.83504 0.917518 0.397695i \(-0.130190\pi\)
0.917518 + 0.397695i \(0.130190\pi\)
\(192\) 0 0
\(193\) 4.58145i 0.329780i 0.986312 + 0.164890i \(0.0527269\pi\)
−0.986312 + 0.164890i \(0.947273\pi\)
\(194\) 0 0
\(195\) 5.84324 23.5174i 0.418443 1.68412i
\(196\) 0 0
\(197\) −16.8638 −1.20149 −0.600747 0.799439i \(-0.705130\pi\)
−0.600747 + 0.799439i \(0.705130\pi\)
\(198\) 0 0
\(199\) −9.84324 −0.697769 −0.348885 0.937166i \(-0.613439\pi\)
−0.348885 + 0.937166i \(0.613439\pi\)
\(200\) 0 0
\(201\) 13.4452 0.948352
\(202\) 0 0
\(203\) 5.26180 0.369306
\(204\) 0 0
\(205\) −4.18342 + 16.8371i −0.292183 + 1.17595i
\(206\) 0 0
\(207\) 0.107307i 0.00745836i
\(208\) 0 0
\(209\) −17.6742 −1.22255
\(210\) 0 0
\(211\) 15.5753i 1.07225i 0.844139 + 0.536124i \(0.180112\pi\)
−0.844139 + 0.536124i \(0.819888\pi\)
\(212\) 0 0
\(213\) 10.5236 0.721065
\(214\) 0 0
\(215\) −2.39803 + 9.65142i −0.163544 + 0.658221i
\(216\) 0 0
\(217\) 12.3135i 0.835896i
\(218\) 0 0
\(219\) 23.2039i 1.56798i
\(220\) 0 0
\(221\) 21.6742i 1.45796i
\(222\) 0 0
\(223\) 16.9854i 1.13743i 0.822535 + 0.568715i \(0.192559\pi\)
−0.822535 + 0.568715i \(0.807441\pi\)
\(224\) 0 0
\(225\) 0.346316 + 0.183417i 0.0230877 + 0.0122278i
\(226\) 0 0
\(227\) −19.9649 −1.32512 −0.662559 0.749009i \(-0.730530\pi\)
−0.662559 + 0.749009i \(0.730530\pi\)
\(228\) 0 0
\(229\) 23.6742i 1.56444i −0.623005 0.782218i \(-0.714088\pi\)
0.623005 0.782218i \(-0.285912\pi\)
\(230\) 0 0
\(231\) 24.3668 1.60322
\(232\) 0 0
\(233\) 13.5753i 0.889348i −0.895693 0.444674i \(-0.853320\pi\)
0.895693 0.444674i \(-0.146680\pi\)
\(234\) 0 0
\(235\) −10.3896 2.58145i −0.677744 0.168395i
\(236\) 0 0
\(237\) −21.6742 −1.40789
\(238\) 0 0
\(239\) 8.36683 0.541206 0.270603 0.962691i \(-0.412777\pi\)
0.270603 + 0.962691i \(0.412777\pi\)
\(240\) 0 0
\(241\) 9.91548 0.638712 0.319356 0.947635i \(-0.396533\pi\)
0.319356 + 0.947635i \(0.396533\pi\)
\(242\) 0 0
\(243\) 0.814315 0.0522383
\(244\) 0 0
\(245\) −0.0422604 + 0.170086i −0.00269992 + 0.0108664i
\(246\) 0 0
\(247\) 20.6803i 1.31586i
\(248\) 0 0
\(249\) −25.5897 −1.62168
\(250\) 0 0
\(251\) 17.6163i 1.11193i −0.831204 0.555967i \(-0.812348\pi\)
0.831204 0.555967i \(-0.187652\pi\)
\(252\) 0 0
\(253\) −7.41855 −0.466400
\(254\) 0 0
\(255\) −12.6803 3.15061i −0.794074 0.197299i
\(256\) 0 0
\(257\) 3.68649i 0.229957i 0.993368 + 0.114978i \(0.0366799\pi\)
−0.993368 + 0.114978i \(0.963320\pi\)
\(258\) 0 0
\(259\) 15.1506i 0.941413i
\(260\) 0 0
\(261\) 0.156755i 0.00970292i
\(262\) 0 0
\(263\) 0.107307i 0.00661684i −0.999995 0.00330842i \(-0.998947\pi\)
0.999995 0.00330842i \(-0.00105311\pi\)
\(264\) 0 0
\(265\) −0.894960 + 3.60197i −0.0549770 + 0.221267i
\(266\) 0 0
\(267\) −14.5692 −0.891618
\(268\) 0 0
\(269\) 3.85762i 0.235203i 0.993061 + 0.117602i \(0.0375206\pi\)
−0.993061 + 0.117602i \(0.962479\pi\)
\(270\) 0 0
\(271\) 21.3074 1.29433 0.647165 0.762350i \(-0.275954\pi\)
0.647165 + 0.762350i \(0.275954\pi\)
\(272\) 0 0
\(273\) 28.5113i 1.72558i
\(274\) 0 0
\(275\) 12.6803 23.9421i 0.764654 1.44377i
\(276\) 0 0
\(277\) 1.44521 0.0868344 0.0434172 0.999057i \(-0.486176\pi\)
0.0434172 + 0.999057i \(0.486176\pi\)
\(278\) 0 0
\(279\) 0.366835 0.0219618
\(280\) 0 0
\(281\) −12.4391 −0.742053 −0.371026 0.928622i \(-0.620994\pi\)
−0.371026 + 0.928622i \(0.620994\pi\)
\(282\) 0 0
\(283\) 6.29072 0.373945 0.186972 0.982365i \(-0.440133\pi\)
0.186972 + 0.982365i \(0.440133\pi\)
\(284\) 0 0
\(285\) −12.0989 3.00614i −0.716677 0.178069i
\(286\) 0 0
\(287\) 20.4124i 1.20491i
\(288\) 0 0
\(289\) 5.31351 0.312559
\(290\) 0 0
\(291\) 7.83096i 0.459059i
\(292\) 0 0
\(293\) −1.07838 −0.0629995 −0.0314998 0.999504i \(-0.510028\pi\)
−0.0314998 + 0.999504i \(0.510028\pi\)
\(294\) 0 0
\(295\) −7.07838 1.75872i −0.412119 0.102397i
\(296\) 0 0
\(297\) 28.5113i 1.65439i
\(298\) 0 0
\(299\) 8.68035i 0.501997i
\(300\) 0 0
\(301\) 11.7009i 0.674427i
\(302\) 0 0
\(303\) 3.95443i 0.227176i
\(304\) 0 0
\(305\) −5.41855 1.34632i −0.310265 0.0770898i
\(306\) 0 0
\(307\) 25.2267 1.43977 0.719883 0.694096i \(-0.244196\pi\)
0.719883 + 0.694096i \(0.244196\pi\)
\(308\) 0 0
\(309\) 27.7009i 1.57585i
\(310\) 0 0
\(311\) 18.8371 1.06815 0.534077 0.845436i \(-0.320659\pi\)
0.534077 + 0.845436i \(0.320659\pi\)
\(312\) 0 0
\(313\) 15.2039i 0.859377i −0.902977 0.429689i \(-0.858623\pi\)
0.902977 0.429689i \(-0.141377\pi\)
\(314\) 0 0
\(315\) −0.447480 0.111183i −0.0252126 0.00626444i
\(316\) 0 0
\(317\) −16.8638 −0.947163 −0.473582 0.880750i \(-0.657039\pi\)
−0.473582 + 0.880750i \(0.657039\pi\)
\(318\) 0 0
\(319\) −10.8371 −0.606761
\(320\) 0 0
\(321\) 26.7526 1.49318
\(322\) 0 0
\(323\) −11.1506 −0.620437
\(324\) 0 0
\(325\) 28.0144 + 14.8371i 1.55396 + 0.823014i
\(326\) 0 0
\(327\) 21.0928i 1.16643i
\(328\) 0 0
\(329\) 12.5958 0.694430
\(330\) 0 0
\(331\) 23.5753i 1.29582i 0.761719 + 0.647908i \(0.224356\pi\)
−0.761719 + 0.647908i \(0.775644\pi\)
\(332\) 0 0
\(333\) −0.451356 −0.0247341
\(334\) 0 0
\(335\) −4.24128 + 17.0700i −0.231726 + 0.932632i
\(336\) 0 0
\(337\) 14.8371i 0.808228i −0.914709 0.404114i \(-0.867580\pi\)
0.914709 0.404114i \(-0.132420\pi\)
\(338\) 0 0
\(339\) 16.0000i 0.869001i
\(340\) 0 0
\(341\) 25.3607i 1.37336i
\(342\) 0 0
\(343\) 18.6225i 1.00552i
\(344\) 0 0
\(345\) −5.07838 1.26180i −0.273411 0.0679328i
\(346\) 0 0
\(347\) 0.133969 0.00719184 0.00359592 0.999994i \(-0.498855\pi\)
0.00359592 + 0.999994i \(0.498855\pi\)
\(348\) 0 0
\(349\) 22.3135i 1.19441i 0.802087 + 0.597207i \(0.203723\pi\)
−0.802087 + 0.597207i \(0.796277\pi\)
\(350\) 0 0
\(351\) 33.3607 1.78066
\(352\) 0 0
\(353\) 22.8371i 1.21550i −0.794130 0.607748i \(-0.792073\pi\)
0.794130 0.607748i \(-0.207927\pi\)
\(354\) 0 0
\(355\) −3.31965 + 13.3607i −0.176189 + 0.709112i
\(356\) 0 0
\(357\) 15.3730 0.813624
\(358\) 0 0
\(359\) 31.8843 1.68279 0.841394 0.540422i \(-0.181735\pi\)
0.841394 + 0.540422i \(0.181735\pi\)
\(360\) 0 0
\(361\) 8.36069 0.440036
\(362\) 0 0
\(363\) −31.3835 −1.64721
\(364\) 0 0
\(365\) 29.4596 + 7.31965i 1.54199 + 0.383128i
\(366\) 0 0
\(367\) 30.4619i 1.59010i 0.606547 + 0.795048i \(0.292554\pi\)
−0.606547 + 0.795048i \(0.707446\pi\)
\(368\) 0 0
\(369\) −0.608111 −0.0316570
\(370\) 0 0
\(371\) 4.36683i 0.226715i
\(372\) 0 0
\(373\) 10.0722 0.521521 0.260760 0.965404i \(-0.416027\pi\)
0.260760 + 0.965404i \(0.416027\pi\)
\(374\) 0 0
\(375\) 12.7526 14.2329i 0.658540 0.734982i
\(376\) 0 0
\(377\) 12.6803i 0.653071i
\(378\) 0 0
\(379\) 14.7792i 0.759159i 0.925159 + 0.379579i \(0.123931\pi\)
−0.925159 + 0.379579i \(0.876069\pi\)
\(380\) 0 0
\(381\) 3.33403i 0.170808i
\(382\) 0 0
\(383\) 14.4619i 0.738966i 0.929237 + 0.369483i \(0.120465\pi\)
−0.929237 + 0.369483i \(0.879535\pi\)
\(384\) 0 0
\(385\) −7.68649 + 30.9360i −0.391740 + 1.57664i
\(386\) 0 0
\(387\) −0.348583 −0.0177195
\(388\) 0 0
\(389\) 3.17727i 0.161094i 0.996751 + 0.0805471i \(0.0256667\pi\)
−0.996751 + 0.0805471i \(0.974333\pi\)
\(390\) 0 0
\(391\) −4.68035 −0.236695
\(392\) 0 0
\(393\) 26.6225i 1.34293i
\(394\) 0 0
\(395\) 6.83710 27.5174i 0.344012 1.38455i
\(396\) 0 0
\(397\) 10.8227 0.543177 0.271589 0.962413i \(-0.412451\pi\)
0.271589 + 0.962413i \(0.412451\pi\)
\(398\) 0 0
\(399\) 14.6681 0.734321
\(400\) 0 0
\(401\) −12.5236 −0.625398 −0.312699 0.949852i \(-0.601233\pi\)
−0.312699 + 0.949852i \(0.601233\pi\)
\(402\) 0 0
\(403\) 29.6742 1.47818
\(404\) 0 0
\(405\) 4.72261 19.0072i 0.234668 0.944475i
\(406\) 0 0
\(407\) 31.2039i 1.54672i
\(408\) 0 0
\(409\) −13.2885 −0.657072 −0.328536 0.944491i \(-0.606555\pi\)
−0.328536 + 0.944491i \(0.606555\pi\)
\(410\) 0 0
\(411\) 25.9877i 1.28188i
\(412\) 0 0
\(413\) 8.58145 0.422266
\(414\) 0 0
\(415\) 8.07223 32.4885i 0.396250 1.59480i
\(416\) 0 0
\(417\) 4.41241i 0.216077i
\(418\) 0 0
\(419\) 0.255652i 0.0124894i −0.999981 0.00624471i \(-0.998012\pi\)
0.999981 0.00624471i \(-0.00198777\pi\)
\(420\) 0 0
\(421\) 2.49693i 0.121693i −0.998147 0.0608464i \(-0.980620\pi\)
0.998147 0.0608464i \(-0.0193800\pi\)
\(422\) 0 0
\(423\) 0.375245i 0.0182451i
\(424\) 0 0
\(425\) 8.00000 15.1050i 0.388057 0.732702i
\(426\) 0 0
\(427\) 6.56916 0.317904
\(428\) 0 0
\(429\) 58.7214i 2.83510i
\(430\) 0 0
\(431\) −0.993857 −0.0478724 −0.0239362 0.999713i \(-0.507620\pi\)
−0.0239362 + 0.999713i \(0.507620\pi\)
\(432\) 0 0
\(433\) 17.6286i 0.847178i 0.905855 + 0.423589i \(0.139230\pi\)
−0.905855 + 0.423589i \(0.860770\pi\)
\(434\) 0 0
\(435\) −7.41855 1.84324i −0.355692 0.0883768i
\(436\) 0 0
\(437\) −4.46573 −0.213625
\(438\) 0 0
\(439\) −40.5113 −1.93350 −0.966750 0.255725i \(-0.917686\pi\)
−0.966750 + 0.255725i \(0.917686\pi\)
\(440\) 0 0
\(441\) −0.00614307 −0.000292527
\(442\) 0 0
\(443\) −17.7093 −0.841393 −0.420697 0.907201i \(-0.638214\pi\)
−0.420697 + 0.907201i \(0.638214\pi\)
\(444\) 0 0
\(445\) 4.59583 18.4969i 0.217863 0.876839i
\(446\) 0 0
\(447\) 3.10504i 0.146863i
\(448\) 0 0
\(449\) 1.28846 0.0608061 0.0304030 0.999538i \(-0.490321\pi\)
0.0304030 + 0.999538i \(0.490321\pi\)
\(450\) 0 0
\(451\) 42.0410i 1.97964i
\(452\) 0 0
\(453\) 8.82482 0.414626
\(454\) 0 0
\(455\) −36.1978 8.99386i −1.69698 0.421639i
\(456\) 0 0
\(457\) 26.3545i 1.23281i −0.787428 0.616407i \(-0.788588\pi\)
0.787428 0.616407i \(-0.211412\pi\)
\(458\) 0 0
\(459\) 17.9877i 0.839595i
\(460\) 0 0
\(461\) 41.0349i 1.91119i 0.294690 + 0.955593i \(0.404783\pi\)
−0.294690 + 0.955593i \(0.595217\pi\)
\(462\) 0 0
\(463\) 28.7708i 1.33709i −0.743670 0.668547i \(-0.766917\pi\)
0.743670 0.668547i \(-0.233083\pi\)
\(464\) 0 0
\(465\) 4.31351 17.3607i 0.200034 0.805083i
\(466\) 0 0
\(467\) −5.12783 −0.237287 −0.118644 0.992937i \(-0.537855\pi\)
−0.118644 + 0.992937i \(0.537855\pi\)
\(468\) 0 0
\(469\) 20.6947i 0.955593i
\(470\) 0 0
\(471\) 23.5174 1.08363
\(472\) 0 0
\(473\) 24.0989i 1.10807i
\(474\) 0 0
\(475\) 7.63317 14.4124i 0.350234 0.661287i
\(476\) 0 0
\(477\) −0.130094 −0.00595657
\(478\) 0 0
\(479\) −13.6742 −0.624790 −0.312395 0.949952i \(-0.601131\pi\)
−0.312395 + 0.949952i \(0.601131\pi\)
\(480\) 0 0
\(481\) −36.5113 −1.66477
\(482\) 0 0
\(483\) 6.15676 0.280142
\(484\) 0 0
\(485\) 9.94214 + 2.47027i 0.451449 + 0.112169i
\(486\) 0 0
\(487\) 8.51971i 0.386065i 0.981192 + 0.193033i \(0.0618323\pi\)
−0.981192 + 0.193033i \(0.938168\pi\)
\(488\) 0 0
\(489\) −10.7526 −0.486249
\(490\) 0 0
\(491\) 4.73820i 0.213832i −0.994268 0.106916i \(-0.965902\pi\)
0.994268 0.106916i \(-0.0340976\pi\)
\(492\) 0 0
\(493\) −6.83710 −0.307928
\(494\) 0 0
\(495\) 0.921622 + 0.228990i 0.0414238 + 0.0102923i
\(496\) 0 0
\(497\) 16.1978i 0.726570i
\(498\) 0 0
\(499\) 11.0928i 0.496580i 0.968686 + 0.248290i \(0.0798686\pi\)
−0.968686 + 0.248290i \(0.920131\pi\)
\(500\) 0 0
\(501\) 6.65368i 0.297265i
\(502\) 0 0
\(503\) 8.42082i 0.375466i −0.982220 0.187733i \(-0.939886\pi\)
0.982220 0.187733i \(-0.0601139\pi\)
\(504\) 0 0
\(505\) −5.02052 1.24742i −0.223410 0.0555094i
\(506\) 0 0
\(507\) 46.4885 2.06463
\(508\) 0 0
\(509\) 26.0000i 1.15243i 0.817298 + 0.576215i \(0.195471\pi\)
−0.817298 + 0.576215i \(0.804529\pi\)
\(510\) 0 0
\(511\) −35.7152 −1.57995
\(512\) 0 0
\(513\) 17.1629i 0.757760i
\(514\) 0 0
\(515\) −35.1689 8.73820i −1.54973 0.385051i
\(516\) 0 0
\(517\) −25.9421 −1.14093
\(518\) 0 0
\(519\) 2.47027 0.108433
\(520\) 0 0
\(521\) 10.3135 0.451843 0.225922 0.974145i \(-0.427461\pi\)
0.225922 + 0.974145i \(0.427461\pi\)
\(522\) 0 0
\(523\) 16.2784 0.711806 0.355903 0.934523i \(-0.384173\pi\)
0.355903 + 0.934523i \(0.384173\pi\)
\(524\) 0 0
\(525\) −10.5236 + 19.8699i −0.459287 + 0.867194i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 21.1256 0.918503
\(530\) 0 0
\(531\) 0.255652i 0.0110944i
\(532\) 0 0
\(533\) −49.1917 −2.13073
\(534\) 0 0
\(535\) −8.43907 + 33.9649i −0.364853 + 1.46843i
\(536\) 0 0
\(537\) 20.4124i 0.880860i
\(538\) 0 0
\(539\) 0.424694i 0.0182929i
\(540\) 0 0
\(541\) 3.36069i 0.144487i 0.997387 + 0.0722437i \(0.0230159\pi\)
−0.997387 + 0.0722437i \(0.976984\pi\)
\(542\) 0 0
\(543\) 26.2557i 1.12674i
\(544\) 0 0
\(545\) 26.7792 + 6.65368i 1.14710 + 0.285013i
\(546\) 0 0
\(547\) 1.51148 0.0646263 0.0323132 0.999478i \(-0.489713\pi\)
0.0323132 + 0.999478i \(0.489713\pi\)
\(548\) 0 0
\(549\) 0.195704i 0.00835243i
\(550\) 0 0
\(551\) −6.52359 −0.277914
\(552\) 0 0
\(553\) 33.3607i 1.41864i
\(554\) 0 0
\(555\) −5.30737 + 21.3607i −0.225285 + 0.906711i
\(556\) 0 0
\(557\) −36.2290 −1.53507 −0.767536 0.641006i \(-0.778517\pi\)
−0.767536 + 0.641006i \(0.778517\pi\)
\(558\) 0 0
\(559\) −28.1978 −1.19264
\(560\) 0 0
\(561\) −31.6619 −1.33677
\(562\) 0 0
\(563\) −2.17501 −0.0916656 −0.0458328 0.998949i \(-0.514594\pi\)
−0.0458328 + 0.998949i \(0.514594\pi\)
\(564\) 0 0
\(565\) 20.3135 + 5.04718i 0.854596 + 0.212336i
\(566\) 0 0
\(567\) 23.0433i 0.967728i
\(568\) 0 0
\(569\) 33.1194 1.38844 0.694219 0.719764i \(-0.255750\pi\)
0.694219 + 0.719764i \(0.255750\pi\)
\(570\) 0 0
\(571\) 18.4657i 0.772767i 0.922338 + 0.386383i \(0.126276\pi\)
−0.922338 + 0.386383i \(0.873724\pi\)
\(572\) 0 0
\(573\) 43.3484 1.81091
\(574\) 0 0
\(575\) 3.20394 6.04945i 0.133613 0.252279i
\(576\) 0 0
\(577\) 14.2101i 0.591573i −0.955254 0.295787i \(-0.904418\pi\)
0.955254 0.295787i \(-0.0955818\pi\)
\(578\) 0 0
\(579\) 7.83096i 0.325444i
\(580\) 0 0
\(581\) 39.3874i 1.63406i
\(582\) 0 0
\(583\) 8.99386i 0.372487i
\(584\) 0 0
\(585\) −0.267938 + 1.07838i −0.0110779 + 0.0445854i
\(586\) 0 0
\(587\) −11.7503 −0.484987 −0.242494 0.970153i \(-0.577965\pi\)
−0.242494 + 0.970153i \(0.577965\pi\)
\(588\) 0 0
\(589\) 15.2663i 0.629038i
\(590\) 0 0
\(591\) −28.8248 −1.18569
\(592\) 0 0
\(593\) 8.00000i 0.328521i −0.986417 0.164260i \(-0.947476\pi\)
0.986417 0.164260i \(-0.0525237\pi\)
\(594\) 0 0
\(595\) −4.84939 + 19.5174i −0.198806 + 0.800137i
\(596\) 0 0
\(597\) −16.8248 −0.688594
\(598\) 0 0
\(599\) −20.5646 −0.840248 −0.420124 0.907467i \(-0.638013\pi\)
−0.420124 + 0.907467i \(0.638013\pi\)
\(600\) 0 0
\(601\) 8.60811 0.351132 0.175566 0.984468i \(-0.443824\pi\)
0.175566 + 0.984468i \(0.443824\pi\)
\(602\) 0 0
\(603\) −0.616522 −0.0251067
\(604\) 0 0
\(605\) 9.89988 39.8443i 0.402487 1.61990i
\(606\) 0 0
\(607\) 0.259528i 0.0105339i −0.999986 0.00526695i \(-0.998323\pi\)
0.999986 0.00526695i \(-0.00167653\pi\)
\(608\) 0 0
\(609\) 8.99386 0.364449
\(610\) 0 0
\(611\) 30.3545i 1.22801i
\(612\) 0 0
\(613\) −47.1650 −1.90498 −0.952488 0.304576i \(-0.901485\pi\)
−0.952488 + 0.304576i \(0.901485\pi\)
\(614\) 0 0
\(615\) −7.15061 + 28.7792i −0.288341 + 1.16049i
\(616\) 0 0
\(617\) 40.2967i 1.62228i 0.584849 + 0.811142i \(0.301154\pi\)
−0.584849 + 0.811142i \(0.698846\pi\)
\(618\) 0 0
\(619\) 30.6102i 1.23033i 0.788399 + 0.615164i \(0.210910\pi\)
−0.788399 + 0.615164i \(0.789090\pi\)
\(620\) 0 0
\(621\) 7.20394i 0.289084i
\(622\) 0 0
\(623\) 22.4247i 0.898426i
\(624\) 0 0
\(625\) 14.0472 + 20.6803i 0.561887 + 0.827214i
\(626\) 0 0
\(627\) −30.2101 −1.20647
\(628\) 0 0
\(629\) 19.6865i 0.784952i
\(630\) 0 0
\(631\) −2.21008 −0.0879819 −0.0439909 0.999032i \(-0.514007\pi\)
−0.0439909 + 0.999032i \(0.514007\pi\)
\(632\) 0 0
\(633\) 26.6225i 1.05815i
\(634\) 0 0
\(635\) −4.23287 1.05172i −0.167976 0.0417361i
\(636\) 0 0
\(637\) −0.496928 −0.0196890
\(638\) 0 0
\(639\) −0.482553 −0.0190895
\(640\) 0 0
\(641\) 7.92777 0.313128 0.156564 0.987668i \(-0.449958\pi\)
0.156564 + 0.987668i \(0.449958\pi\)
\(642\) 0 0
\(643\) −5.18115 −0.204325 −0.102162 0.994768i \(-0.532576\pi\)
−0.102162 + 0.994768i \(0.532576\pi\)
\(644\) 0 0
\(645\) −4.09890 + 16.4969i −0.161394 + 0.649566i
\(646\) 0 0
\(647\) 12.2062i 0.479875i 0.970788 + 0.239938i \(0.0771270\pi\)
−0.970788 + 0.239938i \(0.922873\pi\)
\(648\) 0 0
\(649\) −17.6742 −0.693773
\(650\) 0 0
\(651\) 21.0472i 0.824904i
\(652\) 0 0
\(653\) 32.4969 1.27170 0.635852 0.771811i \(-0.280649\pi\)
0.635852 + 0.771811i \(0.280649\pi\)
\(654\) 0 0
\(655\) −33.7998 8.39803i −1.32067 0.328138i
\(656\) 0 0
\(657\) 1.06400i 0.0415107i
\(658\) 0 0
\(659\) 29.4186i 1.14598i 0.819561 + 0.572992i \(0.194217\pi\)
−0.819561 + 0.572992i \(0.805783\pi\)
\(660\) 0 0
\(661\) 26.0677i 1.01392i −0.861971 0.506958i \(-0.830770\pi\)
0.861971 0.506958i \(-0.169230\pi\)
\(662\) 0 0
\(663\) 37.0472i 1.43879i
\(664\) 0 0
\(665\) −4.62702 + 18.6225i −0.179428 + 0.722149i
\(666\) 0 0
\(667\) −2.73820 −0.106024
\(668\) 0 0
\(669\) 29.0328i 1.12247i
\(670\) 0 0
\(671\) −13.5297 −0.522310
\(672\) 0 0
\(673\) 9.62863i 0.371156i −0.982629 0.185578i \(-0.940584\pi\)
0.982629 0.185578i \(-0.0594158\pi\)
\(674\) 0 0
\(675\) 23.2495 + 12.3135i 0.894874 + 0.473947i
\(676\) 0 0
\(677\) 19.0205 0.731018 0.365509 0.930808i \(-0.380895\pi\)
0.365509 + 0.930808i \(0.380895\pi\)
\(678\) 0 0
\(679\) −12.0533 −0.462564
\(680\) 0 0
\(681\) −34.1256 −1.30769
\(682\) 0 0
\(683\) 17.4947 0.669415 0.334707 0.942322i \(-0.391363\pi\)
0.334707 + 0.942322i \(0.391363\pi\)
\(684\) 0 0
\(685\) −32.9939 8.19779i −1.26063 0.313222i
\(686\) 0 0
\(687\) 40.4657i 1.54386i
\(688\) 0 0
\(689\) −10.5236 −0.400917
\(690\) 0 0
\(691\) 16.3090i 0.620423i 0.950668 + 0.310211i \(0.100400\pi\)
−0.950668 + 0.310211i \(0.899600\pi\)
\(692\) 0 0
\(693\) −1.11733 −0.0424437
\(694\) 0 0
\(695\) 5.60197 + 1.39189i 0.212495 + 0.0527973i
\(696\) 0 0
\(697\) 26.5236i 1.00465i
\(698\) 0 0
\(699\) 23.2039i 0.877653i
\(700\) 0 0
\(701\) 12.9672i 0.489764i −0.969553 0.244882i \(-0.921251\pi\)
0.969553 0.244882i \(-0.0787493\pi\)
\(702\) 0 0
\(703\) 18.7838i 0.708444i
\(704\) 0 0
\(705\) −17.7587 4.41241i −0.668832 0.166181i
\(706\) 0 0
\(707\) 6.08661 0.228911
\(708\) 0 0
\(709\) 7.36069i 0.276437i 0.990402 + 0.138218i \(0.0441376\pi\)
−0.990402 + 0.138218i \(0.955862\pi\)
\(710\) 0 0
\(711\) 0.993857 0.0372725
\(712\) 0 0
\(713\) 6.40787i 0.239977i
\(714\) 0 0
\(715\) 74.5523 + 18.5236i 2.78810 + 0.692743i
\(716\) 0 0
\(717\) 14.3012 0.534089
\(718\) 0 0
\(719\) 19.3197 0.720502 0.360251 0.932856i \(-0.382691\pi\)
0.360251 + 0.932856i \(0.382691\pi\)
\(720\) 0 0
\(721\) 42.6369 1.58788
\(722\) 0 0
\(723\) 16.9483 0.630313
\(724\) 0 0
\(725\) 4.68035 8.83710i 0.173824 0.328202i
\(726\) 0 0
\(727\) 21.1545i 0.784577i −0.919842 0.392288i \(-0.871684\pi\)
0.919842 0.392288i \(-0.128316\pi\)
\(728\) 0 0
\(729\) 27.6681 1.02474
\(730\) 0 0
\(731\) 15.2039i 0.562338i
\(732\) 0 0
\(733\) −22.7526 −0.840386 −0.420193 0.907435i \(-0.638038\pi\)
−0.420193 + 0.907435i \(0.638038\pi\)
\(734\) 0 0
\(735\) −0.0722347 + 0.290725i −0.00266442 + 0.0107235i
\(736\) 0 0
\(737\) 42.6225i 1.57002i
\(738\) 0 0
\(739\) 28.4534i 1.04668i 0.852125 + 0.523338i \(0.175314\pi\)
−0.852125 + 0.523338i \(0.824686\pi\)
\(740\) 0 0
\(741\) 35.3484i 1.29856i
\(742\) 0 0
\(743\) 3.79380i 0.139181i −0.997576 0.0695904i \(-0.977831\pi\)
0.997576 0.0695904i \(-0.0221692\pi\)
\(744\) 0 0
\(745\) −3.94214 0.979481i −0.144429 0.0358854i
\(746\) 0 0
\(747\) 1.17340 0.0429324
\(748\) 0 0
\(749\) 41.1773i 1.50458i
\(750\) 0 0
\(751\) 17.3607 0.633501 0.316750 0.948509i \(-0.397408\pi\)
0.316750 + 0.948509i \(0.397408\pi\)
\(752\) 0 0
\(753\) 30.1112i 1.09731i
\(754\) 0 0
\(755\) −2.78378 + 11.2039i −0.101312 + 0.407753i
\(756\) 0 0
\(757\) −4.76487 −0.173182 −0.0865910 0.996244i \(-0.527597\pi\)
−0.0865910 + 0.996244i \(0.527597\pi\)
\(758\) 0 0
\(759\) −12.6803 −0.460267
\(760\) 0 0
\(761\) 14.1978 0.514670 0.257335 0.966322i \(-0.417156\pi\)
0.257335 + 0.966322i \(0.417156\pi\)
\(762\) 0 0
\(763\) −32.4657 −1.17534
\(764\) 0 0
\(765\) 0.581449 + 0.144469i 0.0210223 + 0.00522330i
\(766\) 0 0
\(767\) 20.6803i 0.746724i
\(768\) 0 0
\(769\) −54.7091 −1.97286 −0.986430 0.164181i \(-0.947502\pi\)
−0.986430 + 0.164181i \(0.947502\pi\)
\(770\) 0 0
\(771\) 6.30122i 0.226933i
\(772\) 0 0
\(773\) 11.0205 0.396381 0.198190 0.980164i \(-0.436494\pi\)
0.198190 + 0.980164i \(0.436494\pi\)
\(774\) 0 0
\(775\) 20.6803 + 10.9528i 0.742860 + 0.393437i
\(776\) 0 0
\(777\) 25.8966i 0.929034i
\(778\) 0 0
\(779\) 25.3074i 0.906731i
\(780\) 0 0
\(781\) 33.3607i 1.19374i
\(782\) 0 0
\(783\) 10.5236i 0.376082i
\(784\) 0 0
\(785\) −7.41855 + 29.8576i −0.264779 + 1.06566i
\(786\) 0 0
\(787\) −33.6925 −1.20101 −0.600503 0.799622i \(-0.705033\pi\)
−0.600503 + 0.799622i \(0.705033\pi\)
\(788\) 0 0
\(789\) 0.183417i 0.00652984i
\(790\) 0 0
\(791\) −24.6270 −0.875636
\(792\) 0 0
\(793\) 15.8310i 0.562174i
\(794\) 0 0
\(795\) −1.52973 + 6.15676i −0.0542541 + 0.218358i
\(796\) 0 0
\(797\) −23.7009 −0.839528 −0.419764 0.907633i \(-0.637887\pi\)
−0.419764 + 0.907633i \(0.637887\pi\)
\(798\) 0 0
\(799\) −16.3668 −0.579017
\(800\)